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Preface

The proposed book contains a lot of recent research devoted to numerical simulations
of physical and engineering systems. It can be treated as a bridge linking various
numerical approaches of two closely inter-related branches of science, i.e. physics and
engineering. Since the numerical simulations play a key role in both theoretical and
application-oriented research, professional reference books are highly required by
pure research scientists, applied mathematicians, engineers as well post- graduate
students. In other words, it is expected that the book serves as an effective tool in
training the mentioned groups of researchers and beyond. The book is divided into
two parts. Part 1 includes numerical simulations devoted to physical processes,
whereas part 2 contains numerical simulations of engineering processes.

Part 1 consists of 14 chapters. In chapter 1.1 a uniform distribution of particles in d for
the computational modeling is assumed by M. I. Andriychuk and A. G. Ramm.
Authors of this chapter have shown that theory could be used in many practical
problems: some results on EM wave scattering problems, a number of numerical
methods for light scattering are presented or even an asymptotically exact solution of
the many body acoustic wave scattering are explored. The numerical results are based
on the asymptotical approach to solving the scattering problem in a material with
many small particles which have been embedded in it to help understand better the
dependence of the effective field in the material on the basic parameters of the
problem, and to give a constructive way for creating materials with a desired
refraction coefficient.

Richard Bouma et al. in chapter 1.2 analyzed an overview of simulations of
deformation processes in energetic materials at the macro-, meso-, and molecular
scales. Both non-reactive and reactive processes were considered. An important
motivation for the simulation of deformation processes in energetic materials was the
desire to avoid accidental ignition of explosives under the influence of a mechanical
load, what required the understanding of material behavior at macro-, meso- and
molecular scales. Main topics in that study were: the macroscopic deformation of a
PBX, a sampling of the various approaches that could be applied for mesoscale
modeling, representative simulations based on grain-resolved simulations and an
overview of applications of molecular scale modeling to problems of thermal-
mechanical-chemical properties prediction and understanding deformation processes
on submicron scales.
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In chapter 1.3 Yi Chen et al. analysed EIT and EIT-based slow light in a Doppler-
broadened six-level atomic system of #Rb D2 line. The EIT dip shift due to the
existence of the neighbouring levels was investigated. Authors of this study offered a
better comprehension of the slow light phenomenon in the complicated multi-level
system. They also showed a system whose hyperfine states were closely spaced within
the Doppler broadening for potential applications of optical and quantum information
processing, such as multichannel all-optical buffer memories and slow-light-based
enhanced cross-phase modulation. An N-type system and numerical simulation of
slow light phenomenon in this kind of system were also presented. The importance of
EIT and the slow light phenomenon in multilevel system was explained and it showed
potential applications in the use of ultraslow light for optical information processing
such as all-optical multichannel buffer memory and quantum gate based on enhanced
cross-phase modulation owing to increased interaction time between two slow-light
pulses.

In chapter 1.4 coauthored by Dipti Gupta et al. a new class of electronic materials for
thin film transistor (TFT) applications such as active matrix displays, identification
tags, sensors and other low end consumer applications were illustrated. Authors
explained the importance of two dimensional simulations in both classes of materials
by aiming at several common issues, which were not clarified enough by experimental
means or by analytical equations. It started with modeling of TFTs based on tris-
isopropylsilyl (TIPS) — pentacene to supply a baseline to describe the charge transport
in any new material. The role of metal was stressed and then the stability issue in
solution processable zinc oxide (ZnO) TFTs was taken into consideration. To sum up,
the important role of device simulations for a better understanding of the material
properties and device mechanisms was recognized in TFTs and it was based on
organic and metal oxide semiconductors. By providing illustrations from pentacene,
the effect of physical behavior which was related to semiconductor film properties in
relation to charge injection and charge transport was underlined, TIPS- pentacene and
ZnO based TFTs. The device simulations brightened the complex device phenomenon
that occurred at the metal-semiconductor interface, semiconductor-dielectric interface,
and in the semiconductor film in the form of defect distribution.

The main subjects summarized by Wenlong He et al. of chapter 1.5 were: the
simulations and optimizations of a W-band gyro-BWO including the simulation of a
thermionic cusp electron gun which generated an annular, axis-encircling electron
beam. The optimization of the W-band gyro-BWO was presented by using the 3D PiC
(particle-in-cell) code MAGIC. The MAGIC simulated the interaction between charged
particles and electromagnetic fields as they evolved in time and space from the initial
states. Fields in the three-dimensional grids were solved by Maxwell equations. The
other points which were introduced were: the simulation of the beam-wave interaction
in the helically corrugated interaction region and the simulation and optimization of
an energy recovery system of 4-stage depressed collector.

Paul Horley et al. in chapter 1.6 analyzed different representations (spherical,
Cartesian, stereographic and Frenet-Serret) of the Landau-Lifshitz-Gilbert equation
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describing magnetization dynamics. The numerical method was chosen as an
important point for the simulations of magnetization dynamics. The LLG which was
shown required at least a second-order numerical scheme to obtain the correct
solution. The scope was to consider various representations of the main differential
equations governing the motion of the magnetization vector, as well as to discuss the
main numerical methods which were required for their appropriate solution. It
showed the modeling of the temperature influence over the system, which was usually
done by adding a thermal noise term to the effective field, leading to stochastic
differential equations that require special numerical methods to solve them. Authors
summarized that in order to achieve more realistic results, it was necessary to allow
the variation of the magnetization vector length, which could be realized, for example,
in the Landau-Lifshitz-Bloch equation.

In chapter 1.7 Antonio Jurado-Navas et al. focused on how to model the propagation
of laser beams through the atmosphere with regard to line-of-sight propagation
problems, i.e., receiver is in full view of the transmitter. The aim of this work was to
show an efficient computer simulation technique to derive irradiance fluctuations for a
propagating optical wave in a weakly inhomogeneous medium under the assumption
that small-scale fluctuations modulated by large-scale irradiance fluctuations of the
wave. A novel and easily implementable model of turbulent atmospheric channel was
presented in this study and the adverse effect of the turbulence on the transmitted
optical signal was also included. Authors used some techniques to reduce the
computational load. Namely, to generate the sequence of scintillation coefficients of
Clarke’s method used, the continuous-time signal of the filter was sampled and a
novel technique was applied to reduce computational load.

A novel statistical model for atmospheric optical scintillation was presented by
Antonio Jurado-Navas et al. in chapter 1.8 focusing on strong turbulence regimes,
where multiple scattering effects were important. The aim was to demonstrate that
authors’ proposed model, which fitted in very well with the published data in the
literature, generalized in a closed-form expression most of the developed pdf models
that have been proposed by the scientific community for more than four decades.
Authors' proposal appeared to be applicable for plane and spherical waves under all
conditions of turbulence from weak to super strong in the saturation regime. It derived
some of the distribution models most frequently employed in the bibliography by
properly choosing the magnitudes of the parameters involving the generalized model.
In the end, they performed several comparisons with published plane wave and
spherical wave simulation data over a spacious range of turbulence conditions that
included inner scale effects.

Tatsunosuke Matsui in chapter 1.9 specified the computational procedure of (an
auxiliary differential equation finite-difference time-domain) ADE-FDTD method for
the analysis of lasing dynamics in CLC (Cholesterol liquid crystal) and also presented
that this technique was quite useful for the analysis of EM field dynamics in and out of
CLC laser cavity under lasing condition, which might cooperate with the deep

X



Xl

Preface

comprehension of the underlying physical mechanism of lasing dynamics in CLC. The
lasing dynamics in CLC as a 1D chiral PBG material by the ADE-FDTD approach,
which connected FDTD with ADEs, such as the rate equation in a four-level energy
structure and the equation of motion of Lorentz oscillator was also analyzed. The field
distribution in CLC with twist-defect was rather different from that without any
defect. Finally, it was established that to find more effective mechanism architecture
for achieving a lower lasing threshold, the ADE-FDTD approach could be used.

In chapter 1.10 Rafael Navarro and Justo Arines studied three different problems that
one faces when implementing practical applications (either numerical or
experimental): lack of completeness of ZPs (Zernike polynomials); lack of
orthogonality of ZPs and lack of orthogonality of ZP derivatives. The aim was based
on the study of these three problems and provided practical solutions, which were
tested and validated through realistic numerical simulations. The next goal was to
solve the problem of completeness (both for ZPs and ZPs derivatives), because if there
was guaranteed completeness, then it would apply straightly to Gram-Schmidt (or
related method) to obtain an orthonormal basis over the sampled circular pupil.
Firstly, the basic theory was overwintered and then the study obtained the orthogonal
modes for both the discrete Zernike and the Zernike derivatives transforms for
different sampling patterns. Afterwards, the implementation and results of realistic
computer simulations were described. The non redundant sampling grids presented
above were found to keep completeness of discrete Zernike polynomials within the
circle.

In chapter 1.11 Ratno Nuryadi showed a numerical simulation of the single electron
transistor using Maltab. The simulation was based on the Master equation, which was
obtained from the stochastic process. The following aspects were mentioned: the
derivation of the free energy change due to electron tunneling event, the flowchart of
numerical simulation, which was based on Master equation and the Maltab
implementation. The results produced the staircase behavior in the current-drain
voltage characteristics and periodic oscillations in current-gate voltage characteristics.
The result also recreated the previous studies of SET showing that the simulation
technique achieved good accuracy.

Anatolii Shchedrin and Anna Kalyuzhnaya in chapter 1.12. reported systematic
studies of the electron-kinetic coefficients in mixtures of helium and xenon with iodine
vapors as well as in the He:Xe:I> mixture. An analysis of the distributions of the power
into the discharge between the dominant electron processes in helium-iodine and
xenon-iodine mixtures was performed. The numerical simulation yielded good
agreement with experiment, which was testified to the right choice of the calculation
model and elementary processes for numerical simulation. The numerical simulation
of the discharge and emission kinetics in excimer lamps in mixtures of helium and
xenon with iodine vapours allowed to determine the most important kinetic reactions
having a significant effect on the population kinetics of the emitting states in He:I2and
He:Xe:I> mixtures. The influence of the halogen concentration on the emission power
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of the excimer lamp and the effect of xenon on the relative emission intensities of
iodine atoms and molecules were analyzed. Author stresses that the replacement of
chlorine molecules by less aggressive iodine ones in the working media of excilamps
represented an urgent task. Because the optimization of the output characteristics of
gas-discharge lamps was based on helium-iodine and xenon-iodine mixtures,
numerical simulation of plasma kinetics in a low-pressure discharge in the mentioned
active media was carried out.

The recent progress in the management of the laser pulses by means of optical fibers
with smoothly variable dispersion is described in chapter 1.13 by Alexej A. Sysoliatin
et al. Authors used numerical simulations to present and analyze solution and pulse
dynamics in three kinds of fibers with variable dispersion: dispersion oscillating fiber,
negative dispersion decreasing fiber. The studies focused mainly on the stability of
solutions, where simulations showed that solution splitting into the pairs of pulses
with upshifted and downshifted central wavelengths could be achieved by stepwise
change of dispersion or by a localized loss element of filter. Authors emphasized that
numerical simulation described in their work revealed solution dynamics and analysis
of the solitonic spectra, which gave us a tool to optimize a fiber dispersion and
nonlinearity or most efficient soliton splitting or pulse compression.

Tohru Tashiro and Tatekawa Takayuki constructed a theory in chapter 1.14 which can
explain the dynamics toward such a special steady state described by the King model
especially around the origin. The idea was to represent an interaction by which a
particle of the system is affected by the others by a special random force that originates
from a fluctuation in SGS only (a self-gravitating system). A special Langevin equation
was used which included the additive and the multiplicative noises. The study
demonstrated how their numerical simulations were executed. Furthermore, a
treatment for stochastic differential equations became precise, and so the analytical
result derived by a different method changed a little. The authors also provided a brief
explanation about the machine and the method which were used when the numerical
simulations were performed. Then, the number of densities of SGS (a self-gravitating
system) derived from their numerical simulations was investigated. Apart from that,
the authors showed the densities, which were like that of the King model and both the
exponent and the core radius. Finally, forces influencing each particle of SGS (a self-
gravitating system) were modeled and by using these forces, Langevin equations were
constructed.

Part 2 (Engineering Processes) includes thirteen chapters. In chapter 2.1 coauthored
by Sandra Constanzo and Giuseppe Di Massa the idea to recover far-field patterns
from near-field measurements to face the problem of impractical far-field ranges is
introduced and implemented as leading to use noise controlled test chambers with
reduced size and costs. The accessibility relied on the acquisition of the tangential field
components on a prescribed scanning surface, with the subsequent far-field evaluation
essentially, which was based on a modal expansion inherent to the particular
geometry. In connection to the above, two classes of methods are discussed in this
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study. The first one refers to efficient transformation algorithms for not canonical near-
field surfaces, and the second one is relative to accurate far-field characterization by
near-field amplitude-only (or phase less) measurements.

In chapter 2.2 Edo D’Agaro studied fishing methods that attractive elements of fish
such as light used in many parts of the world. The basic elements that were taken into
consideration for those who were preparing to use a sea electric attraction system was
the safety of operators and possible damage to fish. Streams which were used in
electro-fishing could be continuous (DC), alternate (AC) or pulsed (PDC), depending
on environmental characteristics (conductivity, temperature) and fish (species, size).
The three types (DC, AC, PDC) produced different effects. Only DC and PDC caused a
galvanotaxis reaction, as an active swim towards the anode. The main problem in sea
water electro-fishing was the high electric current demand on the equipment caused
by a very high concentration of salt water. The answer was to reduce the current
demand as much as possible by using pulsed direct current, the pulses being as small
as possible. The numerical simulations of a non homogeneous electric field (fish and
water) permitted to estimate the current gradient in the open sea and to evaluate the
attraction capacity of fish using an electro-fishing device. Tank simulations were
carried out in a uniform electric field and were generated by two parallel linear
electrodes. In practice, in the open sea situation, the efficiency of an electro-fishing
system was stronger, in terms of attraction area. Numerical simulations that were
carried out using a group of 30 fish, both in open sea and in the tank, showed the
presence of a “group effect”, increasing the electric field intensity in the water around
each fish.

Chapter 2.3 coauthored by Jan Awrejcewicz and Larisa P. Dzyubak focuses on
analysis of some problems related to rotor, which were suspended in a magneto-
hydrodynamics field in the case of soft and rigid magnetic materials. 2-dof nonlinear
dynamics of the rotor were analyzed, supported by the magneto-hydrodynamic
bearing (MHDB) system in the cases of soft and rigid magnetic materials. 2-dof non-
linear dynamics of the rotor, which were suspended in a magneto—hydrodynamic field
were studied. In the case of soft magnetic materials, the analytical solutions were
obtained using the method of multiple scales, but in the case of rigid magnetic
materials, hysteresis were investigated using the Bouc-Wen hysteretic model. The
significant obtained points: amplitude level contours of the horizontal and vertical
vibrations of the rotor and phase portraits and hysteretic loops were in good
agreement with the chaotic regions. Chaos was generated by hysteretic properties of
the system considered.

Anselmo Buso and Monica Giomo in chapter 2.4 show two different examples of
expanding a mathematical model essential for two different complex chemical
systems. The complexity of the system was related to the structure heterogeneity in the
first case study and to the various physical-chemical phenomena, which was involved
in the process in the second one. In addition, concentration on the estimation of the
significant parameters of the process and finally the availability of a tool was shown as



Preface

well as on the verified and validated (V&V) mathematical model, which could be used
for simulation, process analysis, process control, optimization and design.

The conception of chapter 2.5 coauthored by Aicha Elhsoumi et al. benefited from the
use of Luenberger and Kalman observers for modeling and monitoring nonlinear
dynamic processes. The aim of this study was to explore a system to monitor
performance degradation in a chemical process involving a class of chemical reactions,
which occur in a jacketed continuous reactor. The comparison between the
measurements of variables set characterizing the behavior of the monitored system
and the corresponding estimates predicted via the mathematical model of system were
included in model-based methods. Apart from this, the generated fault indicators were
related to a specific faults, which might affect the system. Finally, a note of Fault
Detection and Isolation (FDI) in the chemical processes and basic proprieties of linear
observers were introduced and the study also resented how the Luenberger and
Kalman observers can be used for systematic generation of FDI algorithms.

C.AF. Fernandes and José A.P. Morgado in chapter 2.6 presented an example
concerning the use of a numerical simulation method, designated by transfer-matrix-
method (TMM) which was a numerical simulation tool especially adequate for the
design of distributed feedback (DFB) laser structures in high bit rate optical
communication systems (OCS) and represented a paradigmatic example of a
numerical method related to heavy computational times. A detailed description of
those numerical techniques makes the scope of this work. Matrix methods usually
very heavy in terms of processing times were summarized and they should be
optimized in order to improve their time computational efficiency. Authors concluded
that the TMM, both in its static and dynamic versions, represents a powerful tool used
in the important domain of OCS for the optimization of laser structures especially
designed to provide (SLM) single-longitudinal mode operation.

Hiroshi Okumura and Akira Sano in chapter 2.7 aimed to prove that a control method,
which could selectively attenuate only unnecessary signals, is needed. In this chapter,
the authors proposed a novel control scheme which could transmit necessary signals
(Necs) and attenuate only unnecessary signals (Unecs). The control diagram was
called Signal Selection Control (SSC) scheme. The aim of the authors was to explore
two types of the SSC. First, the Necs-Extraction Controller which transmitted only
signals set as Necs, and the other was Unecs-Canceling Controller which weakened
only signals set as Unecs. Furthermore, four adaptive controllers were characterized. It
was validated that the 2-degree-of-freedom Virtual Error controller had the best
performance in the four adaptive controller. Consequently, effectiveness of both SSC
was legalized in two numerical simulations of the Sound Selection Systems.

In chapter 2.8 white-light interferometry was established as a method to measure the
geometrical shape of objects by Pavel Pavlicek. In this chapter the influence of rough
surface and shot noise on measurement uncertainty of white-light interferometry on
rough surface was investigated and it showed that both components of measurement

XV



XVI Preface

add uncertainty geometrically. Two influences that cause the measurement
uncertainty were considered: rough surface and the shot noise of the camera. The
numerical simulations proved that the influence of the rough surface on the
measurement uncertainty was for usual values of spectral widths, sampling step and
noise-to-signal ratio significantly higher than that of shot noise. The obtained results
determined limits under which the conditions for white-light interferometry could be
regarded as usual.

The aim of chapter 2.9 coauthored by Leandro Prevosto et al. was to present a
versatile study of the double-arcing phenomenon, which was one of the drawbacks
that put limits to increasing capabilities of the plasma arc cutting process. There are
some hypothesis in the literature on the physical mechanism that it had triggered the
double-arcing in cutting torches. The authors carried out a study where the staring
point was the analysis and interpretation of the nozzle current-voltage characteristic
curve. A physical interpretation on the origin of the double-arcing phenomenon was
presented and it explained why the double-arcing appeared for example at low values
of the gas mass flow. A complementary numerical study of the space-charge sheath
was also mentioned, which was formed between the plasma and the nozzle wall of a
cutting torch. The numerical study corresponded to a collision-dominated model (ion
mobility-limited motion) for the hydrodynamic description of the sheath adjacent to
the nozzle wall inside of a cutting torch and a physical explanation on the origin of
the transient double-arcing (the so-called non-destructive double-arcing) in cutting
torches was reported. The authors presented a study of the arc plasma-nozzle sheath
structure which was the area where the double-arcing had taken place and a detailed
study of the sheath structure by developing a numerical model for a collisional sheath.

Yohei Saika illustrated in chapter 2.10 both theoretical and practical aspects of inverse
halftoning on the basis of statistical mechanics and its variant, which related to the
generalized statistical smoothing (GSS) and for halftone images obtained by the dither
and error diffusion methods. Furthermore, the statistical performance of the present
method using both the Monte Carlo simulation for a set of snapshots of the Q-Ising
model and the analytical estimate via infinite-range model was presented. From above
studies, it was clear that statistical mechanics were applied to many problems in
various fields, such as information, communication and quantum computation.

The studies in chapter 2.11 coauthored by Rudolf Reinhard et al. proved that
complexity in modern production processes increases continuously. The virtual
planning of these processes simplified their realization extensively and decreased
their implementation costs. The necessary matter was also to interconnect different
specialized simulation tools and to exchange their resulting data. In this work authors
introduced the architecture of a framework for adaptive data integration, which
enabled the interconnection of simulation tools of a specified domain. Authors focused
on the integration of data generated during the applications' usage, which could be
handled with the help of modern middleware techniques. The development of the
framework, which was shown in this study, could be regarded as an important step in
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the establishment of digital production, as the framework allows a holistic, step-by-
step simulation of a production process by usage of specialized tools. With respect to
the methodology used in this chapter, it was not necessary to adapt applications to the
data model aforementioned.

Flavius Dan Surianu in chapter 2.12. emphasized the necessity to increase the number
of the system elements whose mathematical modelling had to be examined in
simulation in order that main components of the power system are included starting
from the thermal, hydro and mechanical primary installations up to the consumers.
Furthermore, the analysis of the simulation results presented compliance with the
evolution of the dynamics of thermal and hydro-mechanic primary installations.
Besides, it was established that the simulation realistically represents a physical
phenomena both in pre- disturbance steady state and in the dynamic processes
following the disturbances in the electric power system.

Hidenori Taga in chapter 2.13. illustrated the return-to-zero differential phase shift
keying (RZ-DPSK) transmission system and the behavior at using the numerical
simulations which showed that the conventional intensity-modulation direct-detection
(IM-DD) system gives better performance near the system zero dispersion wavelength
rather than the other wavelengths. Furthermore, a method of the numerical
simulations was presented, where the results were obtained through the simulation
and the transmission performance of the long-haul RZ-DPSK system using an
advanced optical fibre was simulated, what completed the work.

I would like to thank all book contributors for their patience and improvement of their
chapters. In addition, it is my great pleasure to thank Ms Ana Nikolic for her
professional support during the book preparation.

Finally, I would like to acknowledge my working visit to Darmstadt, Germany
supported by the Alexander von Humboldt Award which also allowed me time to
devote to the book preparation.

Jan Awrejcewicz
Technical University of £.6dz
Poland
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Refraction Coefficient

M. I. Andriychuk! and A. G. Ramm?

Lpidstryhach Institute for Applied Problems in Mechanics and Mathematics, NASU
2Mathematics Department, Kansas State University

YUkraine
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1. Introduction

Theory of wave scattering by small particles of arbitrary shapes was developed by
A. G. Ramm in papers (Ramm, 2005; 2007;a;b; 2008;a; 2009; 2010;a;b) for acoustic and
electromagnetic (EM) waves. He derived analytical formulas for the S-matrix for wave
scattering by a small body of arbitrary shape, and developed an approach for creating
materials with a desired spatial dispersion. One can create a desired refraction coefficient
n?(x,w) with a desired x,w-dependence, where w is the wave frequency. In particular,
one can create materials with negative refraction, i.e., material in which phase velocity is
directed opposite to the group velocity. Such materials are of interest in applications, see,
e.g., (Hansen, 2008; von Rhein et al., 2007). The theory, described in this Chapter, can be
used in many practical problems. Some results on EM wave scattering problems one can
find in (Tatseiba & Matsuoka, 2005), where random distribution of particles was considered.
A number of numerical methods for light scattering are presented in (Barber & Hill, 1990).
An asymptotically exact solution of the many body acoustic wave scattering problem was
developed in (Ramm, 2007) under the assumptions ka << 1,d = O(a'/3), M = O(1/a),
where a is the characteristic size of the particles, k = 271/A is the wave number, d is the
distance between neighboring particles, and M is the total number of the particles embedded
in a bounded domain D C R3. It was not assumed in (Ramm, 2007) that the particles
were distributed uniformly in the space, or that there was any periodic structure in their
distribution. In this Chapter, a uniform distribution of particles in D for the computational
modeling is assumed (see Figure 1). An impedance boundary condition on the boundary S,
of the m-th particle D,, was assumed, 1 < m < M. In (Ramm, 2008a) the above assumptions
were generalized as follows:

h(xm)

ak

Tm = , d=0(a?3),  M=0(-—
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where (, is the boundary impedance, by, = h(xm), X € D, and h(x) € C(D) is an arbitrary
continuous in D function, D is the closure of D, Imh < 0. The initial field u, satisfies the
Helmholtz equation in R3 and the scattered field satisfies the radiation condition. We assume
in this Chapter that ¥ € (0,1) and the small particle Dy, is a ball of radius a centered at the
pointx,;, € D,1 <m < M.

Fig. 1. Geometry of problem with M = 27 particles

2. Solution of the scattering problem

The scattering problem is

M
V24203 (x)jupy =0  in  R3\ U D, )
m=
aMM
IN = Cmlip on Sm,1<m< M, 3)
where
up = ug + oy, 4)

1 is a solution to problem (2), (3) with M = 0 (i.e., in the absence of the embedded particles)
and with the incident field e**. The scattered field v, satisfies the radiation condition. The
refraction coefficient 713(x) of the material in a bounded region D is assumed for simplicity
a bounded function whose set of discontinuities has zero Lebesgue measure in R3, and
Imn%(x) > 0. We assume that n%(x) = 1in D’ := R®\ D. It was proved in (Ramm, 2008)
that the unique solution to problem (2) - (4) exists, is unique, and is of the form

M
un(x) = uo(x) + Y [ Glxy)om(w)dy, ©
m=ls,

where G(x,y) is Green’s function of the Helmholtz equation (2) in the case when M = 0,
i.e., when there are no embedded particles, and oy, (y) are some unknown functions. If these
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functions are chosen so that the boundary conditions (3) are satisfied, then formula (5) gives
the unique solution to problem (2) - (4). Let us define the "effective field" u,, acting on the m-th
particle:

ne(x) 1= e(x,) i= ") () == una () = [ GCx,y)m (v)dy, ©)
Sm

where |x — x| ~ a. If |x — x| >> a, then up(x) ~ ugm) (x). The ~ sign denotes the same

order as a — 0. The function 0y, (y) solves an exact integral equation (see (Ramm, 2008)). This
equation is solved in (Ramm, 2008) asymptotically as a — 0, see formulas (12)-(15) in Section
3. Let h(x) € C(D), Imh < 0, be arbitrary, A C D be any subdomain of D, and N (A) be the
number of the embedded particles in A. We assume that

1
a2«

N(A) =

/ N(x)dx[1+0(1)], a—0, (7)
A
where N(x) > 0 is a given continuous function in D. The following result was proved in
(Ramm, 2008).
Theorem 1. There exists the limit u(x) of u.(x) asa — 0:
li — =0, 8
lim|[ue (x) — u(x)llc(p) ®)
and u(x) solves the following equation:

u(x) = uo(x) — 47 [ G(x,yh(y)N(u(y)dy. ©
D

This is the equation, derived in (Ramm, 2008) for the limiting effective field in the medium,
created by embedding many small particles with the distribution law (7).

3. Approximate representation of the effective field

Let us derive an explicit formula for the effective field u,. Rewrite the exact formula (5) as:

M M
una(x) = wo(x) + - Glxxm)Qu+ Y [ 16(0y) = Gl xm)lom(w)dy,  (10)
m=1 m:lsm
where
Qu = [ ouw)dy. (11)
Sm

Using some estimates of G(x,y) (see (Ramm, 2007)) and the asymptotic formula for Q,, from
(Ramm, 2008), one can rewrite the exact formula (10) as follows:

M
up(x) = up(x) + Z G(x,x)Qm +0(1), a—0, |x — x| = a. (12)

m=1
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The numbers Q;, 1 < m < M, are given by the asymptotic formula
Qu = —47th(xp ) tte(x)a* *[1+0(1)], a —0, (13)
and the asymptotic formula for 7y, is (see (Ramm, 2008)):

o = e lin) iy o)), 00 14

The asymptotic formula for u.(x) in the region |x — xj| ~a,1<j<M,is (see (Ramm, 2008)):

. M
ud) (x) = up(x) — 47 2# G (%, %) (0 Y1t ()22~ [1 4 (1)) (15)
m=1,m#j

Equation (9) for the limiting effective field u(x) is used for numerical calculations when the
number M is large, e.g., M = 10%,b > 3. The goal of our numerical experiments is to
investigate the behavior of the solution to equation (9) and compare it with the asymptotic
formula (15) in order to establish the limits of applicability of our asymptotic approach to
many-body wave scattering problem for small particles.

4. Reduction of the scattering problem to solving linear algebraic systems

The numerical calculation of the field u, by formula (15) requires the knowledge of the
numbers i, := u.(xy,). These numbers are obtained by solving the following linear algebraic
system (LAS):

M
uj = ugj —4n Z G(xj, xm)h(xm)umaz_", i=12,.,M, (16)
m=1,m#j

where uj = u(xj), 1 < j < M. This LAS is convenient for numerical calculations, because
its matrix is sometimes diagonally dominant. Moreover, it follows from the results in (Ramm,
2009), that for sufficiently small a this LAS is uniquely solvable. Let the union of small cubes
Ap, centered at the points yp, form a partition of D, and the diameter of A, be O(dl/ 2). For
finitely many cubes A, the union of these cubes may not give D. In this case we consider the
smallest partition containing D and define n3(x) = 1 in the small cubes that do not belong
to D. To find the solution to the limiting equation (9), we use the collocation method from

(Ramm, 2009), which yields the following LAS:

P
uj = ugj — 47 1Z:;EG(xj,xp)h(yp)N(yp)up|A,,\, r=12.,P, 17)
p=1mzj

where P is the number of small cubes A, y, is the center of Ay, and |A,| is volume of A,.
From the computational point of view solving LAS (17) is much easier than solving LAS (16)
if P << M. We have two different LAS: one is (16), the other is (17). The first corresponds
to formula (15). The second corresponds to a collocation method for solving equation (9).
Solving these LAS, one can compare their solutions and evaluate the limits of applicability of
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the asymptotic approach from (Ramm, 2008) to solving many-body wave scattering problem
in the case of small particles.

5. EM wave scattering by many small particles

Let D is the domain that contains M particles of radius g, d is distance between them. Assume
that ka < 1, where k > 0 is the wavenumber. The governing equations for scattering problem
are:

V x E =iwuH, V x H= —iwe (x)E in R?, (18)
where w > 01is the frequency, = jip = const is the magnetic constant, ¢’ (x) = ¢y = const > 0
inD' =R3\D, ¢(x) = e(x) +i@; o(x) >0,€(x) #0 V x € R3, &(x) € C*(R3) is a twice
continuously differentiable function, o(x) = 0 in D’, ¢(x) is the conductivity. From (18) one
gets

VXVxE=K(xE H= >*E (19)
iwy
where K2(x) = w?¢' (x)u. We are looking for the solution of the equation
V x V x E=K?(x)E (20)
satisfying the radiation condition
E(x) = Eo(x) +o, @
where Ep(x) is the plane wave
Eo(x) = Eek®*, k= %, (22)

¢ = w, /€ is the wave velocity in the homogeneous medium outside D, ¢ = const is the
dielectric parameter in the outside region D/, a € S? is the incident direction of the plane
wave, S2 is unit sphere in R3, £ -a =0, £ is a constant vector, and the scattered field v satisfies

the radiation condition 5 1

a—z:—lkv—o(r), r=l|x| = o (23)
uniformly in directions B := x/r. If E is found, then the pair {E, H}, where H is determined
by second formula (19), solves our scattering problem. It was proved in (Ramm, 2008a), that

scattering problem for system (18) is equivalent to solution of the integral equation:

E(x) = Eo(x +Z/gxy dy+ZVx/gxy E(y)dy, (24)
m=1
D NZ

where M is the number of small bodies, p(x) = K?(x) — k%, p(x) = 0in D/, q(y) = %,

g(x) =0in D, g(x,y) = % Equation (24) one can rewrite as

M
E(x) )+ Z (2, %m ) Vin + V28(X, X )om] + Z Jim =+ Ku), (25)
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where
Jm = / [8(x,y) — &(x, xm)p(y)E(y)dy, (26)
Dm
K = Vs [ [g(x,y) = 8(x, xm)a (1) E(y)dy. @7)
Dl?l

Neglecting ], and Ky, let us derive a linear algebraic system for finding Vi, and vy,. If V3
and vy, , 1 < m < M, are found, then the EM wave scattering problem for M small bodies is
solved by the formula

M
E(x) = Eo(x) + Z [8(%, Xm ) Vin + Vg (X, Xm)Om] (28)
m=1
with an error O(§ + ka) in the domain minj<,,<p |* — x| := d > a. To derive a linear

algebraic system for Vin and v, multiply (25) by p(x), integrate over D}, and neglect the terms

Jm and Ky, to get
M

Vj = V()]' + Z (aijm + B]'mvm)zl <j<M, (29)
m=1
where
Voji= [ p0)Eo(x)dx, ;= / p(V)E(x)dx, (30)
= /p (x, xp )dx, (31)
= /p(x)ng(x,xm)dx. (32)
b;

Take the dot product of (25) with g(x), integrate over D;, and neglect the terms J,;, and Ky, to
get

M
- UO] Z C]me + djmvm)ll < ] <M, (33)
where

= / vj = /q(x) - E(x)dx, (34)

G = [ (0)3(x, 5, )

D;
djp 1= /q(x) - Vag(x, xm)dx. (36)
D

Equations (29) and (33) form a linear algebraic system for finding V,; and v;;,, 1 < m < M.
This linear algebraic system is uniquely solvable if ko < 1and a < d. Elements Bj,, and Cjy,,
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are vectors, and 4y, djy, are scalars. Under the conditions

M
225, 1 (el + el + 1B+ 11Cyul) < 1 @)

one can solve linear algebraic system (29), (33) by iterations. In (37), ||Bj ;|| and ||Cjy,|| are the
lengths of corresponding vectors. Condition (37) holds if 2 < 1 and M is not growing too fast
asa — 0, not faster than O(a~3). In the process of computational modeling, it is necessary
to investigate the solution of system (29), (33) numerically and to check the condition (37) for
given geometrical parameters of problem.

6. Evaluation of applicability of asymptotic approach for EM scattering

One can write the linear algebraic system corresponding to formula (24) as follows (Ramm,
2008a)

P P
Ej=Ey+ L g(x,xp)p(xp)E(xp)+ Ve L g(xj,xp)q(xp) - E(xp),
R ¥y A oy (38)

j=12,.,P, Xj, Xp € D,

where E; = E(x;). Having the solution to (38), the values of E(x) in all R3 one can calculate

by
P

P
E(x) = Eo(x) + Zlg(x, xp)p(xp)E(xp) + Vi Zlg(xr xXp) q(xp) - E(xp). (39)
p= p=

The values E(xp) in (39) correspond to set {E(xp),p = 1,...,P}, which is determined in
(38), where P is number of collocation points. In the process of numerical calculations the
integration over regions Dy, in formula (24) is replaced by calculation of a Riemannian sum,
and the derivative Vy is replaced by a divided difference. This allows one to compare the
numerical solutions to system (38) with asymptotical ones calculated by the formula (28).

7. Determination of refraction coefficient for EM wave scattering

Formula (28) does not contain the parameters that characterize the properties of D, in
particular, its refraction coefficient n?(x). In (Ramm, 2008a) a limiting equation, as a — 0,
for the effective field is derived:

Ee(x) = Eo(x) + [ 8(x,)C)Ee(v)dy, (40)
D

and an explicit formula for refraction coefficient n%(x) is obtained. These results can be used
in computational modeling. One has E.(x) := lir% E(x), and
a—

C(xm) = ClmN(xm)- (41)

Formula (41) defines uniquely a continuous function C(x) since the points x, are distributed
everywhere dense in D as 2 — 0. The function C(x) can be created as we wish, since it is



10 Numerical Simulations of Physical and Engineering Processes

determined by the numbers c1,,, and by the function N(x), which are at our disposal. Apply
the operator V2 + k2 to (40) and get

[VZ 4+ K?(x)]E. = 0, K2(x) := K? 4 C(x) := K*n?(x). (42)
Thus, the refraction coefficient n2(x) is defined by the formula
n?(x) =14k 2C(x). (43)

The functions C(x) and 7 (x) depend on the choice of N(x) and cy,,. The function N(x) in
formula (7) and the numbers cy,, we can choose as we like. One can vary N(x) and ¢y, to
reduce the discrepancy between the solution to equation (40) and the solution to equation
(39). A computational procedure for doing this is described and tested for small number of
particles in Section 9.

8. Numerical experiments for acoustic scattering

The numerical approach to solving the acoustic wave scattering problem for small particles
was developed in (Andriychuk & Ramm, 2010). There some numerical results were
given. These results demonstrated the applicability of the asymptotic approach to solving
many-body wave scattering problem by the method described in Sections 3 and 4. From the
practical point of view, the following numerical experiments are of interest and of importance:
a) For not very large M, say, M=2, 5, 10, 25, 50, one wants to find a and d, for which the
asymptotic formula (12) (without the remainder 0(1)) is no longer applicable;

b) One wants to find the relative accuracy of the solutions to the limiting equation (9) and to
the LAS (17);

c) For large M, say, M = 105, M = 10°, one wants to find the relative accuracy of the solutions
to the limiting equation (9) and of the solutions to the LAS (16);

d) One wants to find the relative accuracy of the solutions to the LAS (16) and (17);

e) Using Ramm’s method for creating materials with a desired refraction coefficient, one wants
to find out for some given refraction coefficients n?(x) and n3(x), what the smallest M (or,
equivalently, largest a) is for which the corresponding n%/l(x) differs from the desired n?(x)

by not more than, say, 5% - 10%. Here n2 is the value of the refraction coefficient of

M(x
the material obtained by embedding M small p(au}ticles into D accoring to the recipe described
below.

We take k = 1, x = 0.9, and N(x) = const for the numerical calculations. For k = 1, and 4 and
d, used in the numerical experiments, one can have many small particles on the wavelength.

Therefore, the multiple scattering effects are not negligible.

8.1 Applicability of asymptotic formulas for small number of particles

We consider the solution to LAS (17) with 20 collocation points along each coordinate axis
as the benchmark solution. The total number P of the collocation points is P = 8000. The
applicability of the asymptotic formulas is checked by solving LAS (16) for small number M
of particles and determining the problem parameters for which the solutions to these LAS are
close. A standard interpolation procedure is used in order to obtain the values of the solution
to (17) at the points corresponding to the position of the particles. In this case the number P of
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the collocation points exceeds the number M of particles. In Fig. 2, the relative errors of real
(solid line) and imaginary (dashed line) parts, as well as the modulus (dot-dashed line) of the
solution to (16) are shown for the case M = 4; the distance between particles is d = q(2=x)/ 3¢,
where C is an additional parameter of optimization (in our case C = 5, that yields the smallest
error of deviation of etalon and asymptotic field components), N(x) = 5. The minimal relative
error of the solution to (16) does not exceed 0.05% and is reached when a € (0.02,0.03). The
value of the function N(x) influences (to a considerable degree) the quality of approximation.
The relative error for N(x) = 40 with the same other parameters is shown in Fig. 3. The error
is smallest at 2 = 0.01, and it grows when a increases. The minimal error that we were able to
obtain for this case is about 0.01% . The dependence of the error on the distance d between
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Fig. 2. Relative error of solution to (16) versus size a of particle, N(x) =5
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Fig. 3. Relative error of solution to (16) versus size a of particle, N(x) = 40

particles for a fixed a was investigated as well. In Fig. 4, the relative error versus parameter d
is shown. The number of particles M = 4, the radius of particles 2 = 0.01. The minimal error
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was obtained when C = 14. This error was 0.005% for the real part, 0.0025% for the imaginary
part, and 0.002% for the modulus of the solution.
The error grows significantly when d deviates from the optimal value, i.e., the value of d for
which the error of the calculated solution to LAS (16) is minimal. Similar results are obtained
for the case a = 0.02 (see Fig. 5). For example, at M = 2 the optimal value of d is 0.038 for
a = 0.01, and it is 0.053 for a = 0.02. The error is even more sensitive to changes of the distance
d in this case. The minimal value of the error is obtained when C = 8. The error was 0.0078%
for the real part, 0.0071% for the imaginary part, and 0.002% for the modulus of the solution.
The numerical results show that the accuracy of the approximation of the solutions to LAS
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Fig. 5. Relative error of solution versus distance d between particles, a = 0.02



Numerical Solution of Many-Body Wave Scattering Problem

for Small Particles and Creating Materials with Desired Refraction Coefficient 13
M value
M=2 M=4 M=6 M=38
a=0.01 0.038 0.025 0.026 0.027
a=0.02 0.053 0.023 0.027 0.054

Table 1. Optimal values of d for small M

M value
M=10 M =20 M =230 M =40
a=0.01 0.011 0.0105 0.007 0.006
a=0.02 0.016 0.018 0.020 0.023

Table 2. Optimal values of d for medium M

(16) and (17) depends on a significantly, and it improves when a decreases. For example, the
minimal error, obtained at 2 = 0.04, is equal to 0.018%. The optimal values of d are given in
Tables 1, and 2 for small and not so small M respectively. The numerical results show that the
distribution of particles in the medium does not influence significantly the optimal values of
d. By optimal values of d we mean the values at which the error of the solution to LAS (16) is
minimal when the values of the other parameters are fixed. For example, the optimal values
of d for M = 8 at the two types of the distribution of particles: (2 x 2 x 2) and (4 x 2 x 1) differ
by not more than 0.5% . The numerical results demonstrate that to decrease the relative error
of solution to system (16), it is necessary to make a smaller if the value of d is fixed. One can
see that the quality of approximation improves as 2 — 0, but the condition d >> a is not valid
for small number M of particles: the values of the distance d is of the order O(a).

8.2 Accuracy of the solution to the limiting equation

The numerical procedure for checking the accuracy of the solution to equation (9) uses the
calculations with various values of the parameters k, 4, Ip, and h(x), where I is diameter of
D. The absolute and relative errors were calculated by increasing the number of collocation
points. The dependence of the accuracy on the parameter p, where p = +/P, P is the total
number of small subdomains in D, is shown in Fig. 6 and Fig. 7 for k = 1.0, [p = 0.5, 2 = 0.01
at the different values of h(x). The solution corresponding to p =20 is considered as “exact”
solution (the number P for this case is equal to 8000). The error of the solution to equation (9)
is equal to 1.1% and 0.02% for real and imaginary part, respectively, at p = 5 (125 collocation
points), it decreases to values of 0.7% and 0.05% if p = 6 (216 collocation points), and it
decreases to values 0.29% and 0.02% if p = 8 (512 collocation points), i(x) = k?(1 — 3i) / (407).
The relative error smaller than 0.01% for the real part of solution is obtained at p = 12, this
error tends to zero when p increases. This error depends on the function h(x) as well, it
diminishes when the imaginary part of (x) decreases. The error for the real and imaginary
parts of the solution at p = 19 does not exceed 0.01%. The numerical calculations show that
the error depends much on the value of k. In Fig. 8 and Fig. 9 the results are shown for k = 2.0
and k = 0.6 respectively (h(x) = k?>(1 — 3i)/(407)). It is seen that the error is nearly 10 times
larger at k = 2.0. The maximal error (at p = 5) for k = 0.6 is less than 30% of the error for
k = 1.0. This error tends to zero even faster for smaller k.



14 Numerical Simulations of Physical and Engineering Processes

0.02
—Real
——-Imag
N = ="Abs
0.015}
N
. N oy
g NN
& L%
g 0.01 \\,\
i Y
o e
A \-.\
kY 2
0.005 \\\\
\*:?‘-~E,
0 "'--..I_____;_-u
5 7 9 11 p 13

Sxid .

\ —Real
AN - H
6F WY i

A
'g 5t \\\\ .
i Y
24 \\ 1
= Y
53 AN E

Fig. 7. Relative error versus the p parameter, h(x) = k?(1 — 3i)/ (407)

8.3 Accuracy of the solution to the limiting equation (9) and to the asymptotic LAS (16)
As before, we consider as the “exact” solution to (9) the approximate solution to LAS (17) with
o = 20. The maximal relative error for such p does not exceed 0.01% in the range of problem
parameters we have considered (k = 0.5+ 1.0, [p = 0.5+ 1.0, N(x) > 4.0). The numerical
calculations are carried out for various sizes of the domain D and various function N(x). The
results for small values of M are presented in Table 3 for k = 1, N(x) = 40, and Ip = 1.0. The
second line contains the values of 4,4, the estimated value of 4, calculated by formula (7), with
the number N (A) replacing the number M. In this case the radius of a particle is calculated
as

st = (M/ [ N()dx)/ 0, (44)

A,
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The values of a,p; in the third line correspond to optimal values of a which yield minimal
relative error of the modulus of the solutions to equation (9) and LAS (16). The fourth line
contains the values of the distance d between particles. The maximal value of the error is
obtained when y = 7, u = v/M and it decreases slowly when y increases. The calculation
results for large number of y with the same set of input parameters are shown in Table 4. The
minimal error of the solutions is obtained at i = 60 (total number of particles M = 2.16 - 10°.
Tables 5 and 6 contain similar results for N(x) = 4.0, other parameters being the same. It is
seen that the relative error of the solution decreases when number of particles M increases.
This error can be decreased slightly (on 0.02%-0.01%) by small change of the values a and Ip
as well. The relative error of the solution to LAS (16) tends to the relative error of the solution
to LAS (17) when the parameter y becomes greater than 80 (M = 5.12 - 10°). The relative error
of the solution to LAS (17) is calculated by taking the norm of the difference of the solutions
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u 7 9 11 13 15

Aest 0.1418 0.0714 0.0413  0.0262  0.0177
Aopt 0.1061 0.0612 0.0382  0.0261  0.0172
d 0.1333 0.1105 0.0924  0.0790  0.0688
Rel.error 2.53%  0.46%  0.45% 1.12% 0.81%

Table 3. Optimal parameters of D for small #, N(x) = 40.0

u 20 30 40 50 60

Aost 0.0081  0.0027 0.0012  6.65x 10~% 4.04 x 10~*

Aopt 0.0077  0.0025 0.0011 6.6x107% 4.04 x 10~*
0.0526  0.0345 0.0256  0.0204 0.0169

Rel.error 0.59%  0.35%  0.36%  0.27% 0.19%

Table 4. Optimal parameters of D for big y1, N(x) = 40.0

u 7 9 11 13 15

Aest 0.0175 0.0088 0.0051  0.0032  0.0022
dopt 0.0179 0.0090 0.0052  0.0033  0.0022
d 0.1607 0.1228 0.0990  0.0828  0.0711

Rel.error 1.48% 1.14%  1.06% 1.05% 0.91%

Table 5. Optimal parameters of D for small y, N(x) = 4.0

1 20 30 40 50 60
st 9.97 x 107* 3.30 x 10~* 1.51 x 10~* 8.20 x 10> 4.98 x 1075
opt 1.02 x 1073 3.32 x 107 1.50 x 10 8.21 x 107> 4.99 x 10>
d 0.0542 0.0361 0.0265 0.0209 0.0172
Rel.error 0.21% 0.12% 0.11% 0.07% 0.03%

Table 6. Optimal parameters of D for big u, N(x) = 4.0

to (17) with P and 2P points, and dividing it by the norm of the solution to (17) calculated for
2P points. The relative error of the solution to LAS (16) is calculated by taking the norm of the
difference between the solution to (16), calculated by an interpolation formula at the points y,
from (17), and the solution of (17), and dividing the norm of this difference by the norm of the
solution to (17).

8.4 Investigation of the relative difference between the solution to (16) and (17)

A comparison of the solutions to LAS (16) and (17) is done for various values of 4, and various
values of the number p and . The relative error of the solution decreases when p grows and
u remains the same. For example, when p increases by 50% , the relative error decreases by
12% (for p = 8 and p = 12, u = 15). The differences between the real parts, imaginary parts,
and moduli of the solutions to LAS (16) and (17) are shown in Fig. 10 and Fig. 11 forp = 7,
u = 15. The real part of this difference does not exceed 4% when a = 0.01, it is less than 3.5%
at a = 0.008, less than 2% at a = 0.005; d = 8a, N(x) = 20. This difference is less than 0.08%
when p = 11,4 = 0.001, N = 30, and d = 15a (4 remains the same). Numerical calculations
for wider range of the distance d demonstrate that there is an optimal value of d, starting
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from which the deviation of solutions increases again. These optimal values of d are shown in
Table 7 for various N(x). The calculations show that the optimal distance between particles
increases when the number of particles grows. For small number of particles (see Table 1 and
Table 2) the optimal distance is the value of the order a. For the number of particles M = 15,
i.e. p = 15, this distance is about 10a.

The values of maximal and minimal errors of the solutions for the optimal values of distance
d are shown in Table 8.

One can conclude from the numerical results that optimal values of d decrease slowly when
the function N(x) increases. This decreasing is more pronounced for smaller a. The relative
error of the solution to (16) also smaller for smaller a.
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N(x) value
N(x)=10 N(x)=20 N(x)=30 N(x)=40 N(x)=50
a = 0.005 0.07065 0.04724 0.04716 0.04709 0.04122
a = 0.001 0.08835 0.07578 0.06331 0.06317 0.05056
Table 7. Optimal values of d for various N(x)
N(x) value
N(x)=10 N(x)=20 N(x)=30 N(x)=40 N(x) =50
a =0.005 0.77/0.12 5.25/0.56 0.52/0.1 0.97/0.12 0.32/0.05
a =0.0012.47/0,26 1.7/0.3 0.5/0.1 2.7/0,37 1.5/0.2

Table 8. Relative error of solution in % (max/min) for optimal d

8.5 Evaluation of difference between the desired and obtained refraction coefficients

The recipe for creating the media with a desired refraction coefficient n(x) was proposed in
(Ramm, 2008a). It is important from the computational point of view to see how the refraction
coefficient n%/[ (x), created by this procedure, differs from the one, obtained theoretically. First,
we describe the recipe from (Ramm, 2010a) for creating the desired refraction coefficient n?(x).
By n3(x) we denote the refraction coefficient of the given material.

The recipe consists of three steps.

Step 1. Given n3(x) and n?(x), calculate

px) = K[n§(x) — n?(x)] = p1(x) + ipa (). (45)

Step 1 is trivial from the computational and theoretical viewpoints.
Using the relation

p(x) = 4mh(x)N(x) (46)
from (Ramm, 2008a) and equation (45), one gets the equation for finding h(x) = hy(x) +
ihp (x), namely:

47l () + 2 (WING) = Py (3) + o). @)
Therefore, ) )
NG () = B Ny () = P22, )

Step 2. Given py(x) and po(x), find {h1(x), ha(x), N(x)}.

The system (48) of two equations for the three unknown functions hy(x), hy(x) < 0, and
N(x) > 0, has infinitely many solutions {h1(x), hy(x), N(x)}. If, for example, one takes N(x)
to be an arbitrary positive constant, then h; and hy are uniquely determined by (48). The
condition Imn?(x) > 0 implies Imp = f, < 0, which agrees with the condition i, < 0 if
N(x) > 0. One takes N(x) = hy(x) = hp(x) = 0 at the points at which p1(x) = p2(x) = 0.
One can choose, for example, N to be a positive constant:

N(x) = N = const, (49)

i

1(X) hz(x) — ﬁZ(x) (50)

) =" N 47N’
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Calculation of the values N(x), hi(x), hy(x) by formulas (49)-(50) completes Step 2 our
procedure.

Step 2. is easy from computational and theoretical viewpoints.

Step 3. This step is clear from the theoretical point of view, but it requires solving two basic
technological problems. First, one has to embed many (M) small particles into D at the
approximately prescribed positions according to formula (7). Secondly, the small particles
have to be prepared so that they have prescribed boundary impedances ;, = h(xy,)a™", see
formula (1).

Consider a partition of D into union of small cubes A, which have no common interior points,

and which are centered at the points y(?), and embed in each cube A p the number

N(Ay) = az%/ N(x)dx (51)
AV

of small balls Dy, of radius a, centered at the points x,,, where [b] stands for the integer nearest

b
tob > 0, € (0,1). Let us put these balls at the distance O(u%’(
impedance of these balls equal to h(;,f”) , where h(x) is the function, calculated in Step 2 of our
recipe. Itis proved in (Ramm, 2008a) that the resulting material, obtained by embedding small
particles into D by the above recipe, will have the desired refraction coefficient n?(x) with an
error that tends to zero as a — 0.
Let us emphasize again that Step 3 of our procedure requires solving the following technological
problems:
(i) How does one prepare small balls of radius a with the prescribed boundary impedance? In particular,
it is of practical interest to prepare small balls with large boundary impedance of the order O(a™"),
which has a prescribed frequency dependence.
(ii) How does one embed these small balls in a given domain D, filled with the known material,
according to the requirements formulated in Step 3 ?
The numerical results, presented in this Section, allow one to understand better the role
of various parameters, such as a, M, d, {, in an implementation of our recipe. We give the
numerical results for N(x) = const. For simplicity, we assume that the domain D is a union

), and prepare the boundary

P
of small cubes (subdomains) A, (D = | Ap). This assumption is not a restriction in practical
p=1

applications. Let the functions 13(x) and n?(x) be given. One can calculate the values h; and

hy in (50) and determine the number N (A) of the particles embedded into D. The value of

the boundary impedance % is easy to calculate. Formula (51) gives the total number of

the embedded particles. We consider a simple distribution of small particles. Let us embed
the particles at the nodes of a uniform grid at the distances d = O(az%). The numerical

P
calculations are carried out for the case D = |J Ap, P = 8000, D is cube with side Ip = 0.5,
p=1
the particles are embedded uniformly in D. For this P the relative error in the solution to LAS
(16) and (17) does not exceed 0.1%. Let the domain D be placed in the free space, namely
n3(x) = 1, and the desired refraction coefficient be n?(x) = 2+ 0.01i. One can calculate the
value of N'(A,) by formula (51). On the other hand, one can choose the number y, such that
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M = 33 is closest to N'(A). The functions 713 (x) and 73 (x), calculated by the formula

5 4rthy(x)N - 47thy (x)N
w) = - TN gy = - A0ON) 2

differ from the desired coefficients n?(x) and n3(x). In (52), N = M“}SK , Vp is volume of D,

x < 1is chosen very close to 1, x = 0.99. To obtain minimal discrepancy between njz(x) and

ﬁ]z(x), j = 1,2, we choose two numbers 1 and pp such that M; < N(Ap) < M,, where
M; = p3 and My = 1. Hence, having the number N'(A,) for a fixed 4, one can estimate
the numbers M; and My, and calculate the approximate values of n2(x) and n3(x) by formula
(52). In Fig. 12, the minimal relative error of the calculated value #%(x) depending on the
radius a of particle is shown for the case N(x) = 5 (the solid line corresponds to the real part
of the error, and the dashed line corresponds to the imaginary part of the error in the Figs.
12-14). These results show that the error depends significantly on the relation between the

0.4

0.35¢ /1

0.3f J;

Relative Error
=] =]
= 2
w (%) w

?

S
i

0.05

0 1
0.005 0.01 0.015 a 0.02

Fig. 12. Minimal relative error for calculated refraction coefficient 71> (x), N(x) = 5

numbers M;, M, and N (Ap). The error is smallest when one of the values M; and M, is
sufficiently close to A/ (Ap). The error has quasiperiodic nature with growing amplitude as a
increases (this is clear from the behavior of the function N'(A,) and values M; and M). The
average error on a period increases as a grows. Similar results are shown in Fig. 13 and Fig. 14
for N = 20 and N = 50 respectively. The minimal error is attained when a = 0.015, and this
error is 0.51%. The error is 0.53% when a = 0.008, and it is equal to 0.27% when a = 0.006 for
N(x) = 20,50 respectively. Uniform (equidistant) embedding small particles into D is simple
from the practical point of view. The results in Figs. 12-14 allow one to estimate the number
M of particles needed for obtaining the refraction coefficient close to a desired one in a given
domain D. The results for Ip = 0.5 are shown in Fig. 15. The value y = v/M is marked on the
y axes here. Solid, dashed, and dot-dashed line correspond to N(x) = 5,20, 50, respectively.
One can see from Fig. 15 that the number of particles decreases if radius a increases. The
value d = O(a(2-%)/3) gives the distance d between the embedded particles. For example, for
N(x) = 5,a = 0.01 4 is of the order 0.1359, the calculated d is equal to 0.12 and to 0.16 for



Numerical Solution of Many-Body Wave Scattering Problem
for Small Particles and Creating Materials with Desired Refraction Coefficient 21

0.25
[;
0.2t Y
/oy
!
] Sy /
0.15} ) ! i i
I.I‘j l\ I 1
[} ! i
2z ) f
m 1 J
b )
] I
o ) 1
I 1
I ]
]
1
I
[/

0 L L
0.005 0.01 0.015 a 0.02

Fig. 13. Minimal relative error for calculated refraction coefficient 7 (x), N (x) = 20

0.16 T
i
0.14 N
R
3
Iy
L L3
0.12 b J’ v
& AN ! \ 1
0.1r [
£ Y T i 1 !
2 O ! \ /
o L v i
Loos ! AR 1 ! 1 f
= ! i \
o i F | 1 ] i !
] Y A \ 1 ‘]
o ! Vo \ 1 i
, ] \ \
| ] \ v
] W] 1 \
: ] \ \
] i \

0.015 a 0.02

0 L
0.005 0.01

Fig. 14. Minimal relative error for calculated refraction coefficient 7i*(x), N(x) = 50

u = 5and py = 4, respectively. The calculations show that the difference between the both

values of d is proportional to the relative error for the refraction coefficients. By the formula

d = 0(a2%/3), the value of d does not depend on the diameter Ip of D. This value can

be used as an additional optimization parameter in the procedure of the choice between two

neighboring u in Tables 9, 10. On the other hand, one can estimate the number of the particles
embedded into D using formula (51). Given N (Ap), one can calculate the corresponding
number M of particles if the particles distribution is uniform. The distance between particles
is also easy to calculate if I is given. The optimal values of y, 4 = /M are shown in the
Tables 9 and 10 for Ip = 0.5 and Ip = 1.0 respectively.

The numerical calculations show that the relative error of #%(x) for respective y can be
decreased when the estimation of d is taken into account. Namely, one should choose y from

Tables 9 or 10 that gives value of d close to (a(2~%)/3).
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a N(Ap) Optimal p
0.02 96.12 4<u<5b
0.01 204.05 4<u<b
0.008  245.62 6<u<7
0.005 416.17 7<u<8
0.001 24421 13<u<14

Table 9. Optimal values of y for Ip = 0.5

a N(Ap) Optimal p
0.02 809.25 9<u<10
0.01 1569.1 11<u<12
0.008 19953 12<u <13
0.005 3363.3 15<u<i16
0.001 19753 27 <u <28

Table 10. Optimal values of y for Ip = 1.0

9. Numerical results for EM wave scattering

Computing the solution by limiting formula (28) requires much PC time because one
computes 3 — D integrals by formulas (30)-(32) and (34)-(36). Therefore, the numerical results,
presented here, are restricted to the case of not too large number of particles (M < 1000).
The modeling results demonstrate a good agreement with the theoretical predictions, and
demonstrate the possibility to create a medium with a desired refraction coefficient in a way
similar to the one in the case of acoustic wave scattering.

9.1 Comparison of "exact" and asymptotic solution
Let « = e3, where e3 is unit vector along z axis, then the condition yields E -« = 0, that
vector E is placed in the xOy plane, i. e. it has two components Ey and Ey only. In the case
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M a=0.1 a=02 a=03 a=04
8 0.351 0.798 0.925 1.457
27 0.327 0.825 0.956 1.596
64 0.315 0.867 1.215 1.691
125 0.306 0.935 1.454 1.894

Table 11. Minimal values of d guaranteeing the convergence of iterative process (29), (33)

if domain D is placed symmetrically to axis z and a« = e3 one can consider the component
Eyx or E, because of symmetry (this restriction is valid if x— and y—components in Eg are
the same). The applicability of asymptotic approach was checked by comparison of solution
by the limiting formula (28) and solution determined by the formula (39). The first solution
implies the knowledge of vectors V; and numbers v; which are received from the solutions
to LAS (29), (33). The second solution requires the values {E(y,),p = 1,..., P}, which are
received as solution to LAS (38) by the collocation method (Ramm, 2009). We consider the
solution to LAS (38) with 15 collocation points along each coordinate axis as a benchmark or
"exact" solution. The total number P of the collocation points is P = 3375 and relative error
of solution does not exceed 0.5% in the range of considered values 4, d, and M. The LAS (29),
(33) is solved by iterations and condition (37) superimposes considerable restriction on the
relation d to a. The analytical estimation gives d ~ 154 and greater. It means that dimensions
of D at big number of M are very large that can not satisfy the engineering requirements.
Therefore, the knowledge of minimal values d at which the iterative process for solution to
system (29), (33) is still converged has a practical importance. In Table 11, the minimal values
of d for several a at fixed number of particles M are shown.

One can see that allowable distance d is order d ~ 4a that is less three times than theoretical
estimation.

The investigation of the amplitude field deviation for the both solutions depending on the
radius a of particle was performed for points in the middle and far zone at M = 125,k = 0.1,
and d = 1. In Fig. 16, the results are presented for the far zone of D (dy = 15, where df
is distance from center of D to far zone). The thick curves correspond to the case of the
same amplitude distribution of x— and y—components of the field Eg(x), and thin curves
correspond to the case of various x— and y—components. In the middle zone the solutions
differ in the limits of 20% and greater at the small values of a4, this difference grows if a
increases. The results for the far zone are in good correspondence with theoretical condition,
i. e., the asymptotical solution tends to "exact" one as @ — 0. The maximum deviation of field
components is observed at a = 0.05 and it is equal to 5%, and it is equal to 25% if a grows to
0.5. The relative error can be decreased in the considerable extent if the value of d to icrease.
In the above example the relation d/a is equal to 2 only, and it is complicate situation for our
asymptotical approach.

9.2 Creating the desired refraction coefficient

In Section 7, the formula for refraction coefficient n%(x) for domain D with AV(A) embedded
particles of radius a was derived. If n?(x) is presribed, one can easy to determine the
parameters of D that can provide the desired value of refraction coefficient. Similarly to
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Fig. 16. Relative error of solution to limiting equation (28) for differing Eo(x)

M  N(x) ¢ ym max|p(x)]  Relative error
8 0.7407  0.0675 2.0250 64.4578 0.0005
27 0.5400 0.0912 2.7360 87.0896 0.0009
64 0.4665 0.1072 3.2154 102.1494 0.0023

Table 12. Optimal parameters of D for n?(x) = 1.2

the case of acoustic wave scattering, we formulate constructive recipe to create the media
with desired refraction coefficient. Let us denote the refraction coefficient of medium without
embedded particles 13(x) = 1. We develop a method to create a desired refraction coefficient
n?(x). To do this, we impose some mild restrictions on the function N(x) and p(x). Let the
domain D be a cube with M embedded particles. If one assumes that N(x) = const in D,
then N (x) = Ma?/(d + 2a)3. Having the prescribed n?(x) and known N(x), one can find cy,,
from the relation C(x) = c¢1,,N(x), and number v,, by the formula v, = 30cy,, (see (Ramm,
2008a)). In order to derive the limiting equation of the form (40), the function p(x) is chosen
as follows:

T (1—1)2, 0<t<1,

p) = plr,a) = { g0,

= 7, k= const > 0. (53)

The values of various parameters, calculated by above procedure, are presented in Tables 12
and 13. The relative error of the asymptotic solution is presented in the last columns in these
Tables. This error is minimal at the value of maxp(x) presented in the neighboring column.
In order to obtain greater n%(x) it is necessary to increase p(x) remaining the same of rest
parameters.

The dependence of 7% (x) on a for the various d is shown in Fig. 17 at M = 125 and Fig. 18 at
M = 1000. At the small values of a the scattering from D is negligible, therefore n?(x) — n3(x)
asa — 0. If a grows, then n?(x) decreases and differs considerably from n3(x).

The relative error of the solution to limiting equation (40) is shown in Fig. 19. The error gets
smaller as @ — 0. The numerical results show that the relative error for various d gets larger if
a approaches d /3.
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M N(x) Clm TYm max [p(x)| Relative error
8 0.7407 0.1350 4.0500 128.9155 0.0008
27 0.5400 0.1825 5.4750 174.2747 0.0012
64 0.4665 0.2144 6.4309 204.7019 0.0033

Table 13. Optimal parameters of D for n?(x) = 1.4
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Fig. 17. The refraction coefficient n?(x) at M = 125

1.25

0.95 1 1 1 1
0 0.02 0.04 0.06 008 a 01

Fig. 18. The refraction coefficient n?(x) at M = 1000



26 Numerical Simulations of Physical and Engineering Processes

x10°

3.5

Relative error

0 0.02 0.04 0.06 008 a01

Fig. 19. The relative error of solution to limiting equation (40) for various d

10. Conclusions

The numerical results based on the asymptotical approach to solving the scattering problem in
a material with many small particles embedded in it help to understand better the dependence
of the effective field in the material on the basic parameters of the problem, namely, on
a,M,d,{y, N(x), and h(x), and to give a constructive way for creating materials with a desired
refraction coefficient #%(x), see (Ramm, 2009a), (Ramm, 2010), (Ramm, 2010a).

For acoustic wave scattering, it is shown that, for small number M of particles there is an
optimal value of a, for which the relative error to asymptotic solution is minimal. Whena — 0
and M is small (M < 100) the matrix of (16) is diagonally dominant and the error goes to
0. This is confirmed by the numerical results as well. The relative error can be decreased by
changing function N(x) or by decreasing a, d being fixed, but the condition d >> a is not
necessary if M is small.

The accuracy of the solution to the limiting equation (9) depends on the values of k, 4, and on
the function h(x). The accuracy of the solution improves as the number P increases.

The relative error of the solution to asymptotic LAS (16) depends essentially on the function
N(x) which is at our disposal. In our numerical experiments N(x) = const. The accuracy of
the solution is improved if N(x) decreases, while parameters M, 4, and d are fixed. The error
of the solution decreases if M grows, while d is fixed and satisfying condition d > a.

The relative difference between the solutions to LAS (16) and (17) can be improved by
changing the distance d between the particles, a being fixed. The optimal values of d change
slowly in the considered range of function N(x). The relative error is smaller for smaller a.

A constructive procedure, described in Section 8, for prescribing the function N(x),
calculating the numbers p, and determining the radius a, allows one to obtain the refraction
coefficient approximating better the desired one.

These results help to apply the proposed technique for creating materials with a desired
refraction coefficient using the recipe, formulated in this paper. Development of methods
for embedding many small particles into a given domain D according to our recipe, and for

h(x)

ax

preparing small balls with the desired large impedances { = , especially if one wants
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to have function h(x,w) with a desired frequency dependence, are two basic technological
problems that should be solved for an immediate practical implementation of our recipe.

For EM wave scattering it is shown that, for convergence of iterative procedure (29), (33)
condition (37) is not necessary, but only sufficient: in many examples we had convergence,
but condition was voilated. Altough theoretically we assumed d > 104, our numerical results
show that the proposed method gives good results even for d = 3a in many cases.

The relative error between the "exact" solution corresponding to equation (39) and limiting
solution (28) depends essentially on the ratio d/a. For example, for fixed M and a, (M =
125, a = 0.05) this difference changed from 2.3% to 0.7% if d /a decreases twice.

As in the case of acoustic wave scattering, a simple constructive procedure for calculation of
desired refraction coefficient n?(x) is given. The numerical experiments show that in order to
change the initial value 13(x) one increases radius a while the number M is fixed and not too
large, or increases M and decreases a if M is very large. The second way is more attractive,
because it is in correspondence with our theoretical background.

The extension of the developed numerical procedures for very large M, M > O(10°), and
their applications to solving real-life engineering problems is under consideration now.
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1. Introduction

The sensitivity of energetic materials has been studied extensively for more than half a
century, both experimentally and numerically, due to its importance for reliable functioning
of a munition and avoidance or mitigation of accidents (Bowden & Yoffe, 1952). While the
shock initiation of an explosive under nominal conditions is relatively well understood from
an engineering perspective, our understanding of initiation due to unintended stimuli
(weak shock or fragment impact, fire, damaged explosive charge) is far less complete. As an
example, one cannot exclude the ignition of an explosive due to mechanical deformation,
potentially leading to low- or even high-order explosion/detonation as a consequence of
mechanical stimuli with strain rates and pressures well below the shock sensitivity
threshold. During the last two decades there has been an increased interest in the scientific
community in understanding initiation sensitivity of energetic materials to weak insults.

A relationship between energy dissipation and rate of plastic deformation has been
developed for crystalline energetic materials (Coffey & Sharma, 1999). Chemical reactions
are initiated in crystalline solids when a crystal-specific threshold energy is exceeded. In this
sense, initiation is linked to the rate of plastic deformation. However, practical energetic
materials are usually heterogeneous composites comprised of one or more kinds of energetic
crystals (the filler, for which the mass fraction can exceed 90%) bound together with a binder
matrix that often consists of several different polymer, plasticizer, and stabilizer materials.
Clearly, the mechanical behavior of these polymer-bonded (plastic-bonded) explosives
(PBXs) is far more complicated than for neat crystals of high explosive. It is necessary in
realistic constitutive modeling of energetic compositions to incorporate features reflecting
the complex, multiphase, multiscale structural, dynamical, and chemical properties; see, for
example, Bennett et al., 1998, and Conley & Benson, 1999. The goal in constitutive modeling
is to bridge the particulate nature at the mesoscale to the mechanical properties at the
macroscale.

The macroscale deformations applied to PBX composites in experiments are generally not
the same as the local deformation fields in a component crystal within the composite. This
has been demonstrated using grain-resolved mesoscale simulations wherein the individual
grains and binder phases in a PBX are resolved within a continuum simulation framework.
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Baer & Trott (2002) studied the spatial inhomogeneities in temperature and pressure that
result when a shock wave passes through a sample of material. The statistical properties of
the shocked state were characterized using temporal and spatial probability distribution
functions of temperature, pressure, material velocity and density. The results showed that
reactive waves in composite materials are distinctly different from predictions of idealized,
traditional models based on singular jump state analysis.

Energy and stress localization phenomena culminating in rapid, exothermic chemistry are
complex processes, particularly for shocks near the initiation threshold, for which
subvolumes of material corresponding to the tails of the distribution functions of
temperature and pressure are where initiation will begin. Therefore, a detailed
understanding of composite energetic materials initiation requires knowledge of how
thermal and mechanical energies are transferred through the various constituents and
interfaces of a PBX; how the distributed energy causes structural changes associated with
plasticity or phase transformations; and, when these processes (among others) lead to
sufficiently high localization of energy, how and at what rate chemical reactions occur as
functions of the local stress, temperature, and thermodynamic phase in the material. Each of
these can in principle be studied by using molecular dynamics (MD) simulations.
Distributions of field variables available from mesoscale simulations can be sampled to
provide input to MD simulations; alternatively, results obtained from MD simulations can
be used to guide the formulation of, and determine parameters for, improved mesoscale
descriptions of the constituent materials in the PBX, for structurally perfect materials as well
as ones containing various kinds of crystal lattice defects, voids, crystal surface features, and
material interfaces (Kuklja & Rashkeev 2009; Sewell, 2008; Strachan et al., 2005 Shi &
Brenner, 2008).

This chapter gives an overview of simulations of deformation processes in energetic
materials at the macro-, meso-, and molecular scales. Both non-reactive and reactive
processes are considered. Macroscale simulations are usually developed to mimic real life
situations (for example, munitions performance under intended conditions or response
under accident scenarios) or are used in the development of small-scale experiments
designed to elucidate fundamental properties and behaviors. Because macroscale
simulations lack detailed information concerning microscopic physics and chemistry, their
use for predicting energetic materials initiation is generally limited to engineering
applications of the types mentioned above. For many applications, however, the
macroscopic treatment is sufficient to characterize and explain the deformation behavior of
PBXs. At the other extreme of space and time scales, MD can be used to simulate the fine-
scale details of deformation, including detailed mechanisms of phase changes, chemistry,
and processes that occur at material interfaces or other spatial heterogeneities. Mesoscale
simulation and theory is required to bridge the gap between these limiting cases.

The outline of the remainder of the chapter is as follows: First, the macroscopic
deformation of a PBX, treated as a homogeneous material, is discussed. Specific examples
are provided in which experimental data and simulation results are compared. Next, a
sampling of the various approaches that can be applied for mesoscale modeling is
presented. Representative simulations based on grain-resolved simulations are discussed.
Finally, an overview of applications of molecular scale modeling to problems of thermal-
mechanical-chemical properties prediction and understanding deformation processes on
submicron scales is given, with specific references to the literature to highlight current
capabilities in these areas.
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2. Simulation of deformation at the macroscale: Plastic-bonded explosives
treated as homogeneous material

The low-velocity impact vulnerability of energetic materials is typically studied by using
simulations of deformations at the macroscale. For example, the engineering safety margin
for acceptable crush-up limits of an encased energetic material is the most widely-used
parameter in modern barrier design to prevent sympathetic detonation in ammunition
storage sites. The accidental detonation of a storage module will lead to blast, ground shock,
and propulsion of the barriers placed around that storage module. These accelerated
barriers can impact adjacent storage modules and crush the munitions contained therein.
The development of munition-specific acceptance criteria (Tancreto et al., 1994), and the
comparison of double flyer-plate impact and crush-test results with simulation results
(Malvar, 1994) helped advance the successful design of the so-called High Performance
Magazine (Hager et al., 2000). Munitions are nowadays categorized into sensitivity groups
based on robustness and sensitivity. The initiation threshold of a sensitivity group is
expressed as the required kinetic energy and impulse per unit area from an impacting
barrier to cause a reaction in munitions of that sensitivity group.

The concept of sensitivity groups allows for the design of other storage configurations
through engineering models. One example is the simulation of barrier propulsion by the
detonation of a single storage module containing 5 ton TNT equivalent of explosives, for
which simulated results have been verified experimentally (Bouma et al., 2003; van Wees et
al., 2004); see Fig. 1. However, design parameters related to the barrier do not describe the
processes that may lead to ignition, and certainly do not help in formulating insensitive
explosive compositions.

Fig. 1. Left: Experiment prior to detonation of 5 ton TNT equivalent of explosives in the
central 24 ft container, which is surrounded by four different barrier designs and four
munition storage modules. Right: The simulated results illustrate the pressure contours 5 ms
after the detonation of 5 ton TNT equivalent of explosives, and the disintegration and
movement of the trapezoid-shaped barrier in the photograph towards an adjacent storage
module.

Many experimental tests, including the Susan impact test and friability test (UN, 2008),
Steven impact test (Chidester et al., 1998), set-back generator (Sandusky et al., 1998), spigot
intrusion (Wallace, 1994), drop-weight and projectile impact, and split Hopkinson pressure
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bar (Siviour et al., 2004), study the response of a PBX under mechanical loading conditions
that are specific to particular accident scenarios. Collectively, these tests span a wide range
of geometric complexity and data richness. For some of them the results are expressed
in relatively qualitative terms; for example, the Steven test where the severity of
the mechanical insult to a stationary target with high explosive is based on the impact
velocity of a projectile, and reaction violence is based on criteria such as amount of PBX
recovered, damage to the target containment, and blast pressure at some distance from the
location of projectile/target impact. In other tests more sophisticated experimental methods
and highly instrumented diagnostics allow the detailed mechanical behavior to be inferred
from the data; for example, the split Hopkinson pressure bar. In many cases simulations are
required to aid in the interpretation of the data; specific examples for the split Hopkinson
pressure bar, Steven impact, and LANL impact tests can be found in (Bailly et al., 2011;
Gruau et al., 2009; Scammon et al., 1998).

The ballistic impact chamber is a specific drop-weight impact test designed to impose a
shear deformation in a cylindrical sample of explosive (Coffey, 1995). (The name drop-
weight impact test originates with the fact that the impact velocity depends on the height
from which the weight is dropped onto the sample.) If a relationship between energy
dissipation and rate of plastic deformation is known, the deformation rate can be used to
define a mechanical initiation threshold (Coffey & Sharma, 1999). A drop-impact load
impinges on the striker, which loads a cylindrical sample between the striker and an anvil
(see Fig. 2) The cylinder is compressed along the cylinder axis and expands radially. The
shear rate in the ballistic impact chamber is described by

dy 1o |ho dh
a e\ d’ @

with r and & the radius and the height of the sample, respectively, ythe shear, and ¢ the time.
The shear rate is largest near the perimeter of the cylinder. Initiation is detected by
photodiodes. Knowing the striker velocity dh/dt and the time of initiation, the required shear
rate for initiation dy/dt can be calculated. Measured shear rate thresholds are given by
Namkung & Coffey (2001).

Striker

Pellet

— /
Anvil

Photodiode

Fig. 2. Left: Schematic cross section of the ballistic impact chamber. Right: Top view of the
chamber. The sample can be seen in the center of the chamber. Attached to the side are two
fiber optic cables and a pressure transducer. The striker is located to the right of the chamber
assembly.
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The deformation of energetic materials in the ballistic impact chamber according to equation
1 has been verified by simulations of a cylindrical sample of PBXN-109 (64 wt%
cyclotrimethylene trinitramine, 20 wt% aluminium and 16 wt% polybutadiene-based
binder), 6.35 mm in diameter and 1.75 mm in height (Meuken et al., 2006). In this example,
the drop weight had an impact velocity of 3 m-s-1, and the striker achieved an initial velocity
of ¥ 6 m's? due to elastic collision. The simulation was carried out using the ANSYS
Autodyn software suite, a versatile explicit analysis tool for modeling the nonlinear
dynamics of solids, fluids, gases and interactions among them. (Autodyn provides, for
example, finite element solvers for computational structural dynamics and mesh-free
particle solvers for high velocities, large deformation and fragmentation (Autodyn,
Birnbaum et al., 1987).) The resulting shear rate in PBXN-109 as a function of time is shown
in the right-hand panel of Fig. 3. The maximum shear rate of approximately 8x105 s is
reached shortly before the end of the negative acceleration of the striker, at a radial distance
about 70% of the sample radius (Bouma et al., 2007). The shear rate values from equation 1
and the Autodyn simulation are comparable, except the rise in shear rate in the simulation
occurs at a longer time since impact. The deformation is complex - there are small
oscillations visible in Fig. 3 due to the shock and reflection waves that travel through the
striker and anvil. Evaluation of the shear sensitivity according to equation 1 is non-trivial,
and simulations are key to interpreting this “simple” cylindrical compression experiment.
The analysis requires that the sample not resists compression by the striker prior to
initiation and that an accurate value of the striker velocity is known. In the example
discussed here the first requirement is satisfied so long as the time to reaction is less than
90% of the original sample height divided by twice the drop weight velocity at the moment
of impact. The experimentally determined shear initiation threshold in the ballistic impact
chamber of PBXN-109 is 1.7x105-2.0x105 s1. A simulation that approximates the
experimental conditions and which includes chemical reaction yields an ignition time of 180
us. The chemical reaction model used in the simulation is limited to an Arrhenius-type
ignition term; a more sophisticated treatment of chemistry that includes, for instance, the
Lee-Tarver (Lee & Tarver, 1980) growth term has not been performed (Zerilli et al., 2002).
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Fig. 3. Left: Shear rate vs. time, calculated using equation 1. The deformation starts at t =0
and is monitored until the height of the sample is equal to 10% of the initial height. Right:
Same as the left-hand panel except the result is obtained from an Autodyn simulation.
Results in the right-hand panel are shown for points near the sample-anvil interface and
originally located at radial distances r = 0.3, 0.8, 1.2, 1.7, 2.2, 2.7, and 3.1 mm from the center
of the sample; deformation of the sample starts at t = 0.07 ms.
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The shear-rate threshold just discussed should also apply to other experimental
configurations. For example, PBXN-109 has been subjected to an explosion-driven
deformation (Meuken et al., 2006). Steel cylinders were filled with PBXN-109 and a layer of
3.0, 4.0, or 5.0 mm plastic explosive, covering one-third of the circumference of the steel
cylinder, was detonated; the results are shown in Fig. 4. In the 3-mm layer case the PBXN-
109 was slightly extruded from the deformed steel cylinder without any sign of reaction. In
the 4-mm layer case there was a mild reaction, as shown by the slightly expanded steel
cylinder. In the 5-mm layer case a violent reaction of the PBXN-109 was observed, resulting
in fragmentation of the steel cylinder.

Figure 5 shows the 2-D simulation set-up of the deformation experiment (left panel); as well
as the shear rate (right panel) in the PBXN-109, calculated close to the inner surface of the
steel cylinder as a function of the angle (where angle 8=0° corresponds to the center of the
deformation layer). The maximum shock pressure is 0.5 GPa, which is well below the 2.2-
5.2 GPa initiation pressure of PBXN-109 in the large scale gap test (Doherty & Watt, 2008).
The maximum shear rates in Fig. 5 are 0.72x105, 1.19x105, and 1.51x105 s-1, respectively, for
the 3-, 4-, and 5-mm layer experiments. The initiation threshold in this deformation test
resembles the threshold in the ballistic impact chamber.

- .'!,l”““

Fig. 4. Explosion-driven deformation of steel-cased PBXN-109 charges. The deformation
results from the detonation of a layer of plastic explosive that partially surrounds the PBX-
N109 charges (see Fig. 5). Results are shown for plastic explosive layer thicknesses of 3 mm
(left), 4 mm (middle) and 5 mm (right).
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Fig. 5. Left: Schematic configuration for 2-D Autodyn simulation of an explosive
deformation test. Right: Maximum shear rates in PBXN-109 as functions of the angle 8 when
deformed by explosive layers of thickness 3 mm (green), 4 mm (blue), and 5 mm (red).
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The maximum shear rate depends on the test configuration. The friability test (UN, 2008)
and the LANL impact test (Bennett et al., 1998) have been simulated for the explosive PBXN-
109, and the Steven impact test (Vandersall et al., 2006) for explosive composition C4, to
correlate the severity of mechanical deformation to initiation of the explosive, see table 1
(Bouma & Meuken, 2004). Permanent deformation and extensive fracturing of the PBX in
the friability test, in which a flat-ended cylindrical projectile is fired into a rigid steel target,
are evident in Fig. 6 (left-hand panel, from Bouma, 1999) as well as the simulated evolution
of shear rate (right-hand panel). The largest calculated shear rate, ~0.45x105 s-1, occurs near
the edges of the &18 mm sample. The experimental result in the left-hand panel of Fig. 6
shows that this rate is too low to cause initiation; this is qualitatively consistent with the
threshold maximum shear rates discussed in connection with Figs. 3-5. The extensive
fracture of the material, which is deliberately induced in this test, has not been modeled.

shearrate (10°s™

Fig. 6. Left: Permanent deformation and fracture of a PBX containing 80% HMX at 91, 110,
121, and 154 m-s-! impact velocity in a friability test. Right: The evolution of shear rate at
various radial distances from the sample in the friability test and near the explosive/steel
interface for PBXN-109 at 150 m-s! impact velocity. The maximum shear rate develops near
the outer radius.

The Steven impact test has been simulated near the experimental initiation thresholds for
explosives PBX 9404 and PBX 9501, respectively 31-34 m-s'! and 39-54 m-s-1 (Chidester et al.,
1998). Again, the calculated shear rates of 105 s confirm experimental initiation thresholds.
Note that the experimental threshold for C4 is an impact velocity of more than 195 m-s-1
(Vandersall et al., 2006), resulting in a shear rate of at least 1.8x105 s1. In the LANL impact
test a pusher impacts a thin rectangular slab of explosive of the same thickness (Bennett et
al.,, 1998). The violence of reaction depends on the diameter and shape of the pusher (result
not shown). The calculated peak shear rate of 16x105 s is large but is very localized, within
1 mm of the edge of the @10 mm pusher, and has duration <1ps.

An analytical model has been developed that links mechanical properties and particle sizes
with the thermal ignition of an explosive. This micro-structural model (Browning, 1995) is
based on 1) Hertz contact stress between two particles of the same diameter in relation to the
applied normal pressure, 2) mechanical work due to sliding motion under a normal
pressure, and 3) thermo-chemical decomposition due to an applied and local heat flux (the
latter originating from the mechanical work in the Hertzian contact points). The ignition
criterion in the model requires the evaluation of the pressure and the shear rate at the
macroscale (Browning, 1995; Gruau et al., 2009; Scammon et al., 1998). Scammon et al. (1998)
evaluate the parameter
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Configuration,
explosive

Test specifics

Shear rate / s

Experimental
observation

3 mm deformation

Chamber, PBXN-109

initiation

Explosion driven Elazfr; deformation Max. 0.72x105 gli)r;eactlon
deformation, PBXN- laver Max. 1.19x105 Violent
109 Y . Max. 1.51x105 .
5 mm deformation reaction
layer
Ballistic Impact 1.7x105-2.0x105 at e
Initiation

Priabilty test; ﬁ.ﬁ?m?; ’ tgvr:f;‘é;;o Max. 0.4x105-0.5x105 | No reaction
10 mm blunt steel
%BA)I(\INL_;ISQP act test, E:[thegf i;gfzrgr;; Max. 16x105 Not available
sample
50 m-s! impact
velocity
Steven impact test, 100 m-s-! impact Max. 0.5x105 No reaction
C4 velocity Max. 1.8x105
157-195 m-st impact
velocity

Table 1. Comparison of shear rates calculated in simulation of various test configurations of
PBXN-109 and explosive composition C4 to experimental results.

with time to ignition t;,,, assuming that pressure p and shear rate dy/dt are constant. Ignition
is associated with the parameter exceeding an explosive-specific value. The underlying
thermo-chemical model has been analyzed in detail for HMX only. However, equation 2 (or
the corresponding expression for variable pressure and shear strain rate loading histories
(Browning & Scammon, 2001; Gruau et al., 2009)), may not be directly applicable to non-
HMX PBXs. The thermo-chemical decomposition in the above model requires a thermo-
chemical simulation of the ignition time as a function of thermal energy fluence through a
crystal-crystal contact surface area, and involves explosive-specific decomposition chemistry
that can be measured, for example, in a one-dimensional time-to-explosion (ODTX) test
(Hsu et al., 2010). This may lead to different exponents in eq. 2 for non-HMX PBXs.

As shown in this section, a macroscopic treatment is generally sufficient to characterize and
explain the deformation behavior of PBXs. However, since macroscopic models treat the
PBX as a homogeneous material, their use for predicting energetic materials initiation is
rather limited. As a first step to a more detailed description of the deformation and initiation
behavior of energetic materials, mesoscale simulations can be performed that include the
influence of the particulate nature of PBX formulations.

3. Simulation of deformation at the mesoscale: The influence of particulate
nature of plastic-bonded explosives

The influence of the particulate nature at the mesoscale can be accounted for in different
ways. One can 1) fit a continuum model with particle-specific features to experimental data;
2) simulate the mechanical behavior of a representative volume element with the mechanical
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properties of its constituents and determine the collective mechanical behavior; or, 3) when
sufficient computer resources are available, simulate the mechanical behavior with spatially
resolved explosive grains and binder.

An example of the first approach is based on the statistical crack mechanics model (Dienes,
1985) in combination with a five-component Maxwell visco-elasticity model, fitting the
parameters to experimental Young's moduli spanning eight orders of magnitude of
relaxation times (Bennett et al, 1998). Constitutive equations are obtained for
implementation into the DYNA3D nonlinear, explicit finite element code for solid and
structural mechanics (DYNA3D). An example of the second approach is the construction of
a continuum constitutive model based on homogenization procedures applied to realistic 2-
D or 3-D representative volume element microstructures obtained, for instance, from digital
images of cross sections (De & Macri, 2006) or X-ray microtomography (Bardenhagen et al.,
2006) of a PBX. An example of the third approach is the direct simulation at the mesoscale of
the propagation of a shock wave through randomly packed crystal ensembles (Baer & Trott,
2002). Probabilistic distribution functions of wave field variables such as pressure, density,
particle velocity, chemical composition, and temperature are studied to gain insight into the
initiation and growth of reactions in heterogeneous materials. For additional studies of
grain-resolved systems see Baer (2002), Reaugh (2002), and Handley (2011); the latter is a
recent Ph.D. dissertation that includes a thorough review of mesoscale simulations and
theory applied to PBXSs.

During mechanical deformation of a PBX interfacial de-bonding can occur and crystals may
even crack. Figure 7 contains a scanning electron micrograph of HMX crystals in a hydroxy-
terminated-polybutadiene binder. A cylindrical sample of this explosive, 9 grams in weight
and 18 mm in diameter, has been impacted at 92 m-s! against a steel plate. The micrograph
corresponds to a section near the impact site in the friability test and demonstrates
interfacial de-bonding as well as crystal cracking (Scholtes et al., 2002). These phenomena
can also be simulated. Figure 8 gives the principal stress in uniaxial compression of PBX
9501 at 2% overall strain. The computational model is 0.465 mm X 0.495 mm and contains 25
particles. De-bonding occurs when the work applied perpendicular or tangential to an
interface exceeds the normal or shear cohesive energy, respectively. The cohesive energies
used to generate the left- and right-hand panels of Fig. 8 are, respectively, below and above
the experimentally derived values. The extent of interfacial de-bonding decreases with
increasing cohesive energy between the particle and binder phases. The increase in cohesive
energy results in a large stress localization within crystals, which increases the probability
for cracks to develop within the crystal (Yan-Qing & Feng-Lei, 2009). Note that the peak
shear rates in the impact experiment of Fig. 7 are of the order of 10% s, whereas the
simulation results shown in Fig. 8 are for a strain rate of 1.2x10-3 s-1.

The particulate nature of most energetic materials and the imperfection of the component
crystals (for example, grain boundaries, seeding crystals, voids, cracks, lattice defects,
solvent inclusions) not only influence the deformation behaviour of the PBX but also the
sensitivity to shock (Doherty & Watt, 2008; van der Heijden & Bouma, 2004a, 2004b, 2010).
Examples of imperfections are shown in Figs. 9 and 10. On the left is an optical micrograph
of a cross section of an RDX crystal. The crystal outer surface is irregular, grains have grown
into each other, and there are multiple defects with sizes of the order of 10 um. On the right
a scanning electron micrograph of the cross section of an RDX crystal from the same lot
(RDX type II obtained from Dyno) is shown. At this magnification, one can see voids with
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sizes on the order of hundreds of nm, as well as a string of voids extending vertically across
the image; note that this latter structure is not a grain boundary. Fig. 10 shows two confocal
scanning laser micrographs with a Dyno Type II RDX crystal at the left and a BAe Royal
Ordnance RDX crystal at the right. By using a confocal scanning laser microscope in
reflection mode it is possible to make optical slices from a transparent object down to a
thickness of about 0.5 pm. In this way, local differences in the refractive index inside a
crystal will be revealed as bright spots on a dark background. The images are recorded with
a Leica TCS SL confocal system using a DM6000 B microscope equipped with a 40X
objective, zoom factor setting of 2. The spots indicate locations with a different refractive
index from the surrounding area and correspond most likely to small inclusions present in
the crystal. Also of interest are the “diffuse” areas within the crystals in the left-hand panel
of Fig. 10. The differences in spot density for the two RDX lots obtained from different
producers are assumed to be correlated with the difference in mechanical sensitivity
(Thompson et al., 2010) and shock sensitivity (Doherty & Watt, 2008).
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Fig. 8. Maximum principal stress in uniaxial compression of PBX 9501 (Reprinted from Yan-
Qing & Feng-Lei, 2009, © 2008, with permission from Elsevier). The two simulations are
identical except that the particle/binder cohesive energy used to generate the right-hand
panel is four times that used to generate the left-hand panel.
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Fig. 9. Optical micrograph (left) and scanning electron micrograph (right) of a cross-section
of a crystal of Dyno type Il RDX (Thompson et al., 2010).

Fig. 10. Confocal scanning laser micrographs for two different qualities of RDX crystals,
produced at a focal plane below the surface. Left: 93.5 pm x 93.5 pm image of Dyno type II
RDX. Right: a 375 um x 375 pm image of BAe Royal Ordnance RDX (Thompson et al., 2010).

Ideally, a simulation at the meso- or molecular-scale should incorporate microstructural
features such as grain boundaries, packing of particles, defects, and voids. A new method to
create a computational set-up with a random pack of arbitrary shapes of particles has been
applied to “typical” HMX crystals by Stafford & Jackson (2010). Armstrong (2009) has
reviewed dislocation mechanics modeling of energetic materials. The review covers
experimental mechanics studied through indentation-hardness properties, impact
properties in various test geometries, and granular compaction. The thermal dissipation of
energy is associated with individual dislocation motions, which may induce a strong
adiabatic heating through dislocation pile-up avalanches. Lei and Koslowski (2010) have
published a phase field dislocation dynamics model for low-symmetry organic crystals.
Using only information about the crystallography and elastic constants they were able to
predict the onset of plastic deformation in sucrose and paracetamol. (Although these are not
energetic materials, the fundamental physics and materials science developed by Lei and
Koslowski would apply equally well to energetic crystals.) Lei and Kowslowski identified
several properties that could be provided from atomic-scale simulations. The use of MD
simulations as a means of providing input to, or guiding the formulation of, mesoscale
models will be discussed in the next section.
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4. Simulation of deformation at the molecular scale: Structural changes and
chemical reactions near lattice defects, voids, and interfaces

Atomic-level simulation methods — MD and Monte Carlo (MC) — in which individual
atoms or chemical functional groups are treated explicitly can be used to understand and
predict the equilibrium and dynamic properties of energetic crystals, binders, and interfaces
between them. In MD a set of classical (e.g., Newton’s) equations of motion are solved in
terms of the interatomic forces, possibly with additional terms corresponding to coupling of
the system to an external thermostat (Hoover, 1985; Nosé, 1984), barostat (Martyna et al.,
1996; Parrinello et al., 1981), or other constraint such as to sample a Hugoniot state of a
material (Maillet & Stoltz, 2008; Ravelo et al., 2004; Reed et al., 2003) to confine the
simulation to a particular ensemble, leading to a trajectory (time history) of particle
positions and momenta from which physical properties can be calculated in terms of
appropriate statistical averages or time correlation functions (Tuckerman, 2010). The
interatomic forces required for MD can be obtained from a parameterized empirical force
field or from electronic structure calculations wherein the forces are obtained directly from
the instantaneous electronic wave function of the system.

Monte Carlo sampling of configuration space is usually performed using a random walk based
on a Markov chain constructed to satisfy microscopic reversibility and detail balance in an
appropriate statistical ensemble. (See, for example: Frenkel & Smit, 2002; Wood, 1968.) Because
the sequence of states in a Markov chain does not comprise a dynamical trajectory, only
properties that can be expressed as averages of some microscopic function of configuration in
phase space that does not explicitly involve the time can be computed. Metropolis MC
(Metropolis et al., 1953), the version of MC most frequently used in molecular simulations,
does not require evaluation of forces but rather only differences in potential energy between
adjacent states (configurations) sampled by the Markov chain. Although in many cases MC
and MD can be used equally effectively, in practice Monte Carlo is not used as widely as MD
in simulations of energetic materials; therefore here we focus on MD.

Electronic structure calculations are sometimes used to study the structures, energies,
charge distributions and higher multipole moments, spectroscopy, and reaction pathways.
These properties can be calculated for isolated molecules, clusters, or periodic structures,
usually at zero Kelvin; however, the effects of finite temperature can be incorporated, for
example, by using the quasi-harmonic approximation (for example, Zerilli & Kukla, 2007),
explicitly from MD trajectories, (Manaa et al., 2009; Tuckerman & Klein, 1998) or using an
appropriate MC sampling scheme (Coe et al, 2009a, 2009b). Most practical electronic
structure calculations for energetic materials are performed using methods based on the
Kohn-Sham density functional theory (DFT) (Koch & Holthausen, 2001), although ab initio
methods are used in some cases (Molt et al., 2011).

The advantage of atomic-level simulation methods is the detailed information they can
provide. For instance, a MD simulation provides the time histories of the phase space
coordinates along a trajectory, from which any classical property of the system, including
detailed reaction chemistry can, in principle, be computed. The main obstacle to the use of
atomic methods in practical multi-scale simulation frameworks is the small spatiotemporal
scales that can be studied — approximately tens of millions of atoms for time scales of
nanoseconds or less — and the requirement, at least for accurate studies rather than ones
designed to examine basic qualitative features of the material response, to have a reliable
description of the inter-atomic forces within the given thermodynamic regime of interest.



Simulations of Deformation Processes in Energetic Materials 41

(While the development of parallel, linear scaling algorithms for electronic structure studies
of condensed phase systems has considerably increased the numbers of atoms that can be
studied (see, for example, Bock et al., 2011; Kresse et al., 2011), system sizes and simulation
times tractable based on electronic structure theory calculations are far smaller than those
using analytical force fields.) A more fundamental question in the case of MD or MC
simulations is that of the applicability of classical statistical mechanics or dynamics for the
study of molecular phenomena.

In the following we discuss ways by which atomic-scale information can be incorporated
within a multiscale simulation framework, providing specific examples relevant to energetic
materials. The focus of most MD simulations of energetic materials has been on predicting
physical properties in the absence of chemistry. A major (and ongoing) hurdle to reliably
treating complex chemistry in MD simulations is the difficulty of describing the forces for
the variety of electronic structures that would be explored at the high temperatures and
pressures corresponding to the von Neumann spike or Chapman-Jouguet state of a
detonating explosive. Currently, the methods to do this are plane-wave DFT or
parameterized analytic representations such as the ReaxFF (van Duin et al., 2001; Strachan et
al., 2005) or AIREBO (Stuart et al., 2000; Liu & Stuart, 2007) force fields. Han et al. (2011)
have recently published simulations of the thermal decomposition of condensed phase
nitromethane studied using ReaxFF.

In general, there are two approaches to the multiscale problem. The arguably simpler
approach is a sequential (or “handshaking”) one in which specific physical properties
required in mesoscale or macroscopic simulations — for example, thermal, transport, or
mechanical properties — are calculated as functions of temperature and pressure and used
directly in the larger-scale simulations. Assuming the validity of classical mechanics, the
major challenge to obtaining reliable predictions for such quantities is the need to
realistically account for defect structures that can be of sizes that exceed the limited MD
spatiotemporal scales. Reliable predictions of properties or structures of rate-dependent
materials or ones with extended interfaces are also difficult to model due to the large time
and space scales associated with them; for example, binders in energetic materials are
usually based on polymers (often with other additives such as plasticizers or stabilizers) that
exhibit both viscoelastic behavior and in some cases complex microphase-segregated
morphologies and non-negligible concentration gradients in the neighborhood of interfaces.
Such simulations are quite challenging within a MD framework; see, for example, Jaidann et
al. (2009). Nevertheless, in some instances it is possible to regard MD predictions as
comprising bounding cases (for example, limit of perfect crystals). Moreover, for many
properties of interest experimental data either do not exist for conditions away from room
temperature/atmospheric pressure or have large apparent uncertainties based on disparate
results obtained for a given property using different experimental techniques. In such
instances the results of atomic simulations can be used to extend the intervals over which
needed parameter values can be estimated or to discriminate among inconsistent data sets.
Examples are included in Table 2, which includes the results of various measurements or
calculations of the second-order elastic tensors for PETN, o-RDX, and B-HMX; and Table 3
which contains the pressure and temperature dependence of the bulk and shear moduli of
crystalline TATB for the Reuss (uniform stress) and Voigt (uniform strain) bounds. Note the
wide variation in some of the experimentally determined values, particularly for RDX and
HMX. In each case, the MD results - based on force fields that were not parameterized using
elasticity data - yield predictions in good agreement with the most recent, and presumably
most accurate, experimental data based on impulsive stimulated thermal scattering.
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A difficulty with direct application of sequential approaches is that, even if a given property
appears in a mesoscopic theory and can be calculated directly and accurately using atomic
methods, possibly including temperature and pressure dependencies, use of those accurate
property values which are treated as adjustable parameters in mesoscale simulations may
lead initially to decreased predictive capability compared to experimental results; that is, an
improved subgrid model or more accurate physically-based parameter specification may
disrupt the overall calibration of the mesoscale model.

The other general approach to multiscale simulation of energetic materials is the concurrent
method in which two different levels of material description are included simultaneously
within a single simulation domain. One example where such an approach would be useful
is grain-resolved mesoscale simulations wherein regions of atomically resolved material are
contained within a larger volume of material treated using continuum mechanics. Such an
approach would be particularly useful for mesoscopic studies of the effects of intra-crystal
defects (dislocations, grain boundaries, voids) or intermaterial interfaces (crystal-binder,
High Explosive (HE)-metal) where localization of temperature, stress, or microscopic strain
rate might be large leading to large gradients in the material (often called /ot spots) wherein
chemical reactions are likely to occur. In addition to theoretical difficulties with formulating
a single simulation method in which particles and continuum regions are treated
seamlessly, concurrent methods are difficult to implement due to the high degree of time
sub-cycling required given the large difference between the time step in a MD simulation
(~0.01-1 fs) compared to the time step in even a high resolution mesoscale simulation (~0.1
ns). Other possibilities for progress based on concurrent approaches include using different
levels of description (and, tacitly assumed, different accuracies of forces) within a single MD
computational domain; for example, use within a limited region such as the neighborhood
of an interface of a force description based on electronic structure or empirically-calibrated
force fields that include chemical reaction surrounded by a (typically much larger) region of
material represented by a less accurate but computationally cheaper model (for instance one
with fixed intramolecular connectivity that does not treat chemical reaction). Applications of
the computational materials design facility (for example, Jaramillo-Botero et al., 2011 and
references therein) illustrate the potential of such methods.

Another approach to extending the space and time scales accessible to molecularly-detailed
methods that has been used with increasing frequency is particle-based coarse-graining in
which chemical functional groups or entire molecules or collections of molecules are treated as
effective particles, with corresponding effective potentials. As an example, Desbiens et al.
(2007, 2009) have developed a model for nitromethane in which the four atoms of the methyl
group are treated as a single particle. This simplified model has been parameterized using a
MC optimization approach, and shown to yield good agreement with several measured
quantities, including second shock temperatures. Gee and co-workers (Gee et al., 2006; Lin et
al., 2007) have developed a coarse-grained description for PETN in which individual PETN
molecules are represented by a five-bead model (nominally the tetramethyl carbon and the
four nitrate pendent groups) (Gee et al., 2006), and have used this model to study surface
diffusion of PETN molecules on different PETN crystal faces (Lin et al., 2007). Izvekov et al.
(2010) have developed a formalism for systematic coarse-graining of molecular materials and
applied it to nitromethane; both a one-site model, in which the molecules are treated as single
particles, and a two-site model, in which the methyl group and nitro groups are treated as
distinct particles, were developed. The approach, which is based on a systematic calibration of
effective  coarse-grained particle-particle interactions using potential-of-mean-force
calculations for fully atomic systems, was shown in the case of a density-dependent potential
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formulation to reproduce the nitromethane liquid structure and shock Hugoniot locus. Lynch
et al. (2008) have developed a simplified model for o-HMX in which individual molecules are
treated as single particles; a novel aspect of this reduced dimensionality “mesodynamics”
(Strachan & Holian, 2005) potential function is that it includes the effects of intramolecular
vibrational degrees of freedom through incorporation of implicit degrees of freedom. The
model, which is only intended to provide a schematic representation of HMX, has been used
to study spall behavior in the shocked crystals. With all coarse-graining or multiscale methods,
a key requirement is to capture the dominant features of the physics at the finer scale when
passing from one scale to the next larger one, and to minimize the amount of non-essential
information that is carried along. The specific requirements will vary depending on the
material type, the thermodynamic and mechanical loading regime of interest, and the fidelity
of the higher-scale model in which the finer-scale results are to be used.

Cn Cs | Cu Ces | Co | Ci3
PETN
Ultrasonics? 17.22 1217 | 5.04 395 | 544 | 7.99
ISTSe 1712 1218 | 5.03 3.81 | 6.06 | 798
MD/MCe 17.6 105 | 4.66 492 | 47 | 6.65
Cin | Co | G | Cu | Gs | C6 | C2 | C3 | Cx
RDX
MCd 269 | 241 | 17.7 | 84 53 76 | 627 | 568 | 6.32
Ultrasonicse 25.02| 196 [1793 | 517 | 407 | 691 8.2 5.8 59
Brillouinf 36.67 | 25.67 | 21.64 [ 1199 | 272 | 7.68 | 1.38 | 1.67 | 917
RUSe 256 | 213 | 190 | 538 | 427 | 727 | 867 | 5.72 | 64
ISTSP 25.15120.08 | 1821 | 526 | 406 | 710 | 823 | 594 | 594
Energy 250 | 238 234 | 31 | 77 | 52 | 106 | 76 | 88
Minimizedh
Cn Cn Css Cu Css Ces Cn Cis Cx Cis Cas Css Cae
B-HMX
ISLS! 20.8 - 185 - 6.1 -— -— 125 -— -0.5 - 19 -
Brillouini 1841|1441 | 1244 | 477 | 477 | 446 | 637 |1050 | 6.42 | -1.10 | 0.83 | 1.08 | 2.75
ISTSk 2058 | 19.69 | 1824 | 992 | 7.69 | 10.67 | 9.65 | 9.75 [ 1293 | -0.61 | 4.89 | 1.57 | 4.42
MD/MC! 222 (239 (234 92 | 111 | 101 | 96 | 132 | 13.0 | -0.1 4.7 1.6 25

a. Winey & Gupta, 2001.

b. Sun et al., 2008. ISTS: Impulsive stimulated thermal scattering.

c. Borodin et al., 2008. Composite MD/MC simulations using flexible molecules.
d. Sewell and Bennett, 2000. MC simulations using rigid molecules.

e. Haussuhl, 2001. The crystal axes used in the original publication have been transformed to coincide
with that used here.

f. Haycraft et al., 2006.

g. Schwarz et al., 2006. RUS: Resonant ultrasound spectroscopy.

h. Munday et al., 2011. Molecular mechanics using flexible molecules.

i. Zaug, 1998. Partial determination. ISLS: Impulsive stimulated light scattering.
j. Stevens & Eckhardt, 2005.

k. Sun et al., 2009.

1. Sewell et al., 2003.

Table 2. Second-order elastic coefficients of PETN, RDX, and B-HMX determined using
various methods. Units are GPa.
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Pressure (GP&) KReuss KVoigt GReuss GVoigt
0.0 13.2 20.3 1.8 11.5
4.0 46.1 62.7 5.2 27.9
8.0 73.3 97 6.5 37.9

Table 3. Calculated pressure-dependent Reuss average and Voigt average bulk and shear
moduli for TATB crystal. Units are GPa. The temperature is T = 300 K. (Adapted from
Bedrov et al., (2009).)

Menikoff & Sewell (2002) have reviewed the physical properties and processes needed for
mesoscale simulations of HMX. Among the properties required that can be reliably
computed for pure materials using atomic-level modeling methods are the thermodynamic
phase boundaries between the polymorphic forms of the crystal and the melting point as a
function of pressure; the coefficients of thermal expansion and isothermal compression; the
heat capacity as a function of temperature and, in general, pressure; the modal and
volumetric Gruneisen coefficient; the elastic tensor and derived isotropic moduli as
functions of temperature and pressure; the elastic-plastic yield surface, which in general is
temperature and stress dependent, and may also exhibit a strain-rate dependence; and
thermal conductivity and shear viscosity as functions of pressure and temperature. A
number of these properties have been computed for HMX and used in continuum
simulations: the elastic tensor (Sewell et al., 2003; Barton et al., 2009; Zamiri & De, 2010), the
temperature-dependent shear viscosity of the liquid (Bedrov et al., 2000; Dienes et al., 2006),
the temperature-dependent specific heat (Goddard et al., 1998; Sewell & Menikoff, 2004),
Other properties discussed by Menikoff and Sewell that must be considered in a realistic
simulation are the “damage” state of the material, for instance size and distributions of
cracks; the nature and density of defects within the crystals; and the effects of material
interfaces on the composite behavior. Bedrov et al. (2003) have discussed how some of these
properties can be obtained from MD simulations. More recently, Rice and Sewell (2008)
reviewed atomic-scale simulations of physical properties in energetic materials, with a focus
on predictions of properties for systems in thermal equilibrium.

Single-crystal plasticity of RDX has been studied using atomic-level simulation methods
and, in some cases, compared to experimental results. Cawkwell and co-workers (Cawkwell
et al.,, 2010; Ramos et al. 2010) have used MD simulations of the shock response of initially
defect-free (111)- and (021)-oriented RDX single crystals to interpret the “anomalous”
elastic-plastic response observed in flyer plate experiments for that orientation, wherein the
evolution with increasing impact strength of VISAR velocity profiles for the (111)
orientation transforms from a clear two-wave elastic-plastic structure to a nearly-overdriven
structure over an interval of shock pressures that is narrow compared to the results obtained
for other crystal orientations. The MD results show that, above a well-defined threshold
shock strength, stacking faults nucleate homogeneously in the material then rapidly
propagate, leading to mechanical hardening consistent with the abrupt transition from a
two-wave structure to a nearly overdriven one (Cawkwell et al., 2010). Based on the results
for the (111)-oriented crystal, Ramos et al. (2010) predicted that similar behavior should arise
for shocks in (021)-oriented RDX, a result that was confirmed both from MD simulations
and flyer plate experiments. Chen et al. (2008) performed large-scale MD simulations of
nanoindentation of (100)-oriented RDX crystal by a diamond indenter using a version of the
ReaxFF reactive force field (van Duin et al.,, 2001; Strachan et al., 2005). They observed
localized damage in the region of the indenter, and calculated a material hardness that is
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consistent with experimental data. They concluded that dominant slip occurs in the (210)
plane along the [120] direction. Ramos et al. (2009) have reported atomic-force
microscopy/nanoindentation experiments for oriented RDX crystals. Because Ramos et al.
did not study indentation for the (100) surface, a direct comparison between their data and
the MD results of Chen et al. is not possible.

Energetic material crystals (and organic crystals generally) often crystallize into low-
symmetry space groups, exhibit polymorphism (c.f., the multiple crystal phases of HMX (see
Refs. 2-5 in Sewell et al., 2003) and RDX (Millar et al. (2010), and references therein; and
Munday et al. (2011))), and are often highly anisotropic in terms of thermal, mechanical, and
surface properties (the graphitic-like stacking of layers in TATB crystal provides an extreme
case (Kolb & Rizzo, 1979; Bedrov et al., 2009). This can lead to anisotropic elastic-plastic
shock response (Hooks et al., 2006; Menikoff et al., 2005; Winey & Gupta, 2010) and even
anisotropic shock initiation thresholds, as has been shown by (Dick, 1984; Dick et al., 1991,
1997) for the case of PETN crystal.

A number of MD studies have been performed to assess shock-induced phase transitions,
anisotropic shock response, and effects of crystal surface properties on polymer adhesion
properties. Thompson and co-workers have studied melting in RDX, and noted a structural
transition that occurs for temperatures just below the melting point (Agrawal et al, 2006).
Thompson and co-workers have also studied the melting (Agrawal et al., 2003; Zheng et al.,
2006; Siavosh-Haghighi, 2006) and crystallization (Siavosh-Haghighi et al.,, 2010) of
nitromethane using a non-reactive force field (Sorescu et al., 2000; Agrawal et al., 2003),
including a prediction of the pressure dependence of the melting point, T, = T,,(P) (Siavosh-
Haghighi & Thompson, 2011; see Fig. 11). Using that same force field Thompson and
coworkers have studied the shock strength dependence for (100)-oriented crystals (Siavosh-
Haghighi et al., 2009; Dawes et al. 2009). They found that considerable disordering occurs
for shock strengths of 2.0 km-s-! and greater. By projecting the instantaneous kinetic energy
of individual molecules in the system onto the normal mode eigenvectors for a single
molecule in the explicit crystal field they characterized the detailed energy transfer between
the shock and molecular translational, rotational, and vibrational modes of the molecule.
The results showed that, among the vibrational modes, shock excitation first excites the low-
frequency modes; subsequent excitation of higher frequency vibrations occurs on longer
time scales, with an approximately monotonic dependence between the frequency of a given
mode and the time required for it to reach a steady-fluctuating energy in the shocked state.
Further, the detailed energy transfer pathways differ for molecules that are impacted
“methyl end first” versus “nitro end first” in the (100) shock orientation. (This latter point is
interesting in light of the observation by Nomura et al. (2007a) for the case of reactive
ReaxFF (van Duin et al., 2001; Strachan et al., 2005) shocks propagating along [100] in RDX
that molecules belonging to the two distinct orientations in the crystal respond differently to
the shock; one group of molecules undergoes chemical reaction while the other exhibits
flattening and rotation without chemistry.)

He et al. (2011) studied shocks in oriented nitromethane crystals impacted at 2.0 km-s! using
MD with the same force field as Dawes et al. (2009). They observed significant differences in
the responses to shocking along the [100], [010], and [001] directions. Jaramillo et al. (2007)
studied the shock response of (100)-oriented a-HMX using a non-reactive force field model
(Smith & Bharadwaj, 1999; Bedrov et al., 2002) for impact strengths between 0.5 and 2.0
km-s1. They observed a clear transition between elastic, elastic-plastic, and overdriven
behavior in the crystals. Their results show that at lower pressures plasticity is mediated by
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the nucleation and spread of crystallographic dislocations, whereas at higher pressures there
is a transition from dislocations to the formation of nanoscale shear bands in the material.
They noted that regions of material associated with these defects had larger local
temperatures. Eason and Sewell (2011) have used a non-reactive force field (Borodin et al.,

2008) to study the shock response of (100)-

and (001)-oriented PETN. These orientations

were found to be insensitive and sensitive, respectively, to shock initiation in the

experiments by Dick and coworkers (Dick,

1984; Dick et al., 1991, 1997). For 1.0 km-s-

shocks, Eason and Sewell (2011) observed the formation of defects in (110) planes for (100)-
oriented shocks, but only elastic compression for (001)-oriented shocks; see Fig. 12.
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Fig. 11. Computed and experimental melting curves for nitromethane. The MD simulation
results were obtained using the SRT force field (Sorescu et al., 2003). See Siavosh-Haghighi

& Thompson (2011) and references therein.

Fig. 12. Snapshot from a MD simulation of a shock wave propagating along [100] in PETN
crystal. Only molecular centers of mass are shown. At the left end of the system is a rigid
piston; the shock wave propagates from left to right. The snapshot corresponds to the
instant of maximum compression (that is, the time when the shock front reaches the right-
hand end of the sample). Blue corresponds to the piston, unshocked material, or elastically
shock-compressed material. Red corresponds to molecules that have undergone locally

inelastic compression.



Simulations of Deformation Processes in Energetic Materials 47

Zybin and coworkers (Budzien et al. 2009; Zybin et al., 2010) studied the reactive dynamics
of PETN using the ReaxFF force field. Budzien et al. studied the onset of chemistry for
shocks propagating along [100] with impact velocities of 3 or 4 km-sl. Zybin et al. (2010)
studied the anisotropic initiation sensitivity of PETN in conjunction with a compress-and-
shear model. By imposing rapid compression followed by rapid shear, with specific
combinations of those two deformation types chosen to emulate the possible interactions
between oriented shocks and probable slip systems, they were able to correlate the buildup
of stresses, local temperatures, and onset of chemistry with the experimentally observed
initiation anisotropy.

Atomic-level simulations of shock waves interacting with pre-existing defects or interfaces
have been performed. Various models ranging in complexity from highly schematic (2AB -
A + By + AH) to relatively realistic (RDX - small molecule products) have been used. Shi
and Brenner (2008), using a reactive force field model for the schematic energetic material
nitrogen cubane (overall stoichiometry Ng(s)=>4N>(g)), have studied the effects of faceted
interfaces on energy localization and detonation initiation. These simulations are of
particular interest because of discussions of whether, or to what extent, the relative shock
insensitivity of certain RDX formulations can be attributed to smoothed crystal edges
obtained by treatment by surfactants or mechanical milling. Shi and Brenner identified
shock focusing and local compression of the facets as two mechanisms for hotspot
formation; which one dominates in a given situation depends on the shock impedance
mismatch between the binder and energetic crystal. Using a version of the ReaxFF reactive
force field (van Duin, 2001; Strachan, 2005), Nomura et al. (2007b) studied the collapse of
single 8-nm diameter cylindrical voids in RDX crystal for the case of shock propagation
along the [100] direction, with piston impact velocities of 1 and 3 km-s (shock velocities of
~3 and ~9 km-s?, respectively). They observed the formation of nanojets during void
collapse, which led to energy focusing when the jet impinged on the downstream wall of the
void. For the weaker shock the local heating from jet impact on the downstream wall
remained largely localized near the collapsed jet/wall interface stagnation zone, whereas for
the stronger shock a conical region of material extending into the downstream wall
underwent vibrational heating. For the stronger shock the dominant reaction during void
closure was N-N bond cleavage; smaller reaction products (N2, H O, HONO) were rapidly
generated once the nanojet reached the downstream wall. Cawkwell and Sewell (2011) have
performed preliminary studies of void collapse in various oriented single crystals of RDX.
Figure 13 contains a snapshot, taken when the shock wave reached the far end of the
simulation cell, of the molecular centers of mass of an RDX crystal subsequent to the
passage of a shock wave with piston impact speed 0.5 km-s1 over a 20 nm cylindrical void in
a (210) shock. Molecules initially on the surface of the cylindrical void are colored blue; all
others are colored red. The results indicate considerable structural complexity in the shock
response, including regions of intense plastic deformation, stacking faults, and a stress-
induced phase transition. Note also the large asymmetry of the void collapse process; for
the crystal orientation and impact speed chosen, lateral jets form from the top and bottom
of the void and collide near the geometric center of the original void. Using a reactive
force field for the model reactive diatomic material 2AB > A, + B, + AH, Herring ef al.
(Herring et al., 2010) performed a detailed study, in 2-D, of the effects of void size and
geometrical arrangement on thresholds for initiation. They considered a number of
geometric arrangements of circular voids including single voids, voids on square and
triangular lattices, and randomly arranged voids. Although the AB system is a highly
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idealized model, it captures many features of reactive waves in real materials (Heim, 2007,
2008a, 2008b).

Fig. 13. Snapshot from a MD simulation of void collapse in (210)-oriented RDX. Only
molecular centers of mass are shown. (Cawkwell & Sewell, 2011.)

As illustrated by the preceding discussion, MD simulations of energetic materials
constituent materials and structures can be used in a variety of ways with objectives that
range from near-quantitative predictions of spectroscopic or thermo-mechanical properties
needed directly within existing constitutive or reactive burn models but currently
unavailable, sparse, or unreliable with present-day experimental methods; to ones designed
to reveal or refine existing understanding of fundamental dynamical processes associated
with material dynamics (inelastic deformation, stress-induced phase transitions); to more
qualitative ones designed to answer basic questions about, for example, material response in
the presence of seeded defects and how material response changes with variations in the
geometric features of those defects or how the morphology of a heterogeneous system
affects the shock-induced localization of energy.

5. Conclusions

An important motivation for the simulation of deformation processes in energetic
materials is the desire to avoid accidental ignition of explosives under the influence of a
mechanical load. This requires the understanding of material behavior at macro-, meso-
and molecular scales.

Experimental methods to determine the sensitivity of energetic materials to an external
stimulus can be directly interpreted in terms of test severity in order to rank explosives.
Simulation at the macroscale facilitates interpretation of experimental results; for example,
by exceeding certain threshold values the ignition of a specific explosive composition is
anticipated. Presented thresholds are related to 1) shear rate, 2) a pressure-, shear-rate- and
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load-duration-dependent parameter, and 3) a parameter incorporating time-varying
pressure and shear-rate loading. The latter two approaches are based on a micro-structural
model. Unfortunately, results are applied only to PBX9501 or similar HMX-containing
explosive compositions. Starting from the same micro-structural model however, one may
arrive at a threshold parameter for PBXs containing energetic crystals other than HMX.
Simulations of PBXs including features from the mesoscale can be categorized as follows.
First, one can use continuum models with particle-specific features that are fitted to
experimental data and use those continuum models as input for simulations at the
macroscale. Secondly, one can determine the collective mechanical behavior by simulation
of a representative volume element with the mechanical properties of all individual
constituents. And thirdly, one can simulate the mechanical behavior in deformation
processes directly at the mesoscale, and interpret the results in terms of probabilistic
distribution functions of wave field variables.

Atomic-level simulations of energetic materials can be used to predict physical properties
such as equations of state, transport coefficients, and spectroscopic features, and to study
fundamental processes such as energy transfer, inelastic deformation, phase transitions, and
reaction chemistry. These are among the properties needed for the development and
parameterization of improved mesoscale models. Depending on the accuracy of the force
field used, these predictions can be expected to be semi-quantitative or to reveal general
features of materials behavior in complicated polyatomic materials. Studies of the effects of
defects, voids, or material interfaces on the physical properties and dynamic response can be
studied in detail; although the results must be interpreted with caution if the goal is to link
directly to the mesoscale, due to the disparity between defect sizes or number densities that
can be simulated using MD and those that occur in real materials.
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1. Introduction

Quantum coherence and interference effects (Scully & Zubairy, 1997) in atomic systems
have attracted great attention in the last two decades. With quantum coherence, the
absorption and dispersion properties of an optical medium can be extremely modified, and
can lead to many important effects such as coherent population trapping (CPT) (Arimondo
& Orriols, 1976; Alzetta et al., 1976; Gray et al., 1978), lasing without inversion (LWI) (Harris,
1989; Scully et al., 1989; Padmabandu et al., 1996), electromagnetically induced transparency
(EIT) (Boller et al., 1991; Harris, 1997; Ham et al., 1997; Phillips et al., 2003; Fleischhauer et
al., 2005; Marangos, 1998), high refractive index without absorption (Scully, 1991; Scully &
Zhu, 1992; Harris et al., 1990), giant Kerr effect (Schmidt & Imamoglu, 1996), slow and fast
light (Boyd & Gauthier, 2002), light storage (Phillips et al., 2001), and other effects. In
particular, EIT plays an important role in the quantum optics area.

EIT, named by Harris and his co-workers, has been extensively studied both experimentally
and theoretically since it was proposed in 1990 (Harris et al.,, 1990). Harris et al. first
experimentally demonstrated EIT in Sr atomic vapour in 1991 (Boller et al., 1991), providing
the basis for further EIT works. Subsequently, M. Xiao and co-workers successfully
observed the EIT effect in Rb vapor by using continuous wave (CW) diode lasers (Xiao et al.,
1995; Li & Xiao, 1995). This work simplified EIT research, and attracted related research.
With the growth of EIT technique, the researchers also realized EIT in several solid state
materials and semiconductors (Serapoglia et al., 2000; Zhao et al., 1997; Ham et al., 1997).
These works provide a firm foundation for EIT-based applications.

One of EIT applications is slow light. Due to the steep dispersion property within the EIT
transparency window, EIT can be used to control the group velocity of light. In the past
decade, ultraslow group velocity based on EIT (Harris et al., 1992) has drawn much attention
to quantum optical applications, such as quantum memories (Liu et al., 2001; Turukhin et al.,
2002; Julsgaard et al., 2004), quantum entanglement generations (Lukin & Hemmer, 2000;
Petrosyan & Kurizki, 2002; Paternostro et al,, 2003), quantum routing (Ham, 2008), and
quantum information processing (Nielsen & Chuang, 2000). So far EIT-based slow light has
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been observed in many media. In 1995, S. E. Harris and co-workers observed group velocity as
slow as c¢ /165 in Pb vapour (Kasapi et al., 1995). In 1999, Hau et al. obtained the famous
ultraslow group velocity 17 m/s in Bose-Einstein condensate of Na (Hau et al., 1999). In the
same year, Scully et al. reported the group velocity of 90 m/s in hot rubidium gas (360 K)
(Kash et al., 1999). In 2002, the light speed of 45 m/s was demonstrated in an optically dense
crystal of Pr doped Y35iOs by B. S. Ham et al. (Turukhin et al., 2002).

Based on deeply investigated EIT and slow light in simple three-level system, recently,
researchers have turned their interests to multi-level system, which may render more
interesting phenomena and closer to the realistic situations. In this chapter, we will study
EIT and EIT-based slow light in a Doppler-broadened six-level atomic system of the
rubidium D2 line. This research work may offer a clearer understanding of the slow light
phenomenon in the complicated multi-level system, and also present a system whose
hyperfine states are closely spaced within the Doppler broadening for potential applications
of optical and quantum information processing, such as multichannel all-optical buffer
memories and slow-light-based enhanced cross-phase modulation (Petrosyan & Kurizki,
2002; Paternostro et al., 2003).

This chapter is organized as following: In section 2, we brief review EIT in a three-level system
and discuss EIT in a Doppler-broadened multi-level atomic system of the rubidium D2 line. In
section 3, based on the results we obtained in section 2, we study EIT-based slow light in the
same atomic system. In section 4, we introduce an N-type system, and numerically simulate
slow light phenomenon in such kind of system. Finally, section 5 offers conclusions.

2. EIT in the Doppler-broadened multi-level atomic system of %Rb D2 line

2.1 Brief review of EIT in a three-level system

EIT is one of the most important quantum coherent effects, and also serves as the foundation
of this chapter. We will first review the optical properties of EIT in a three-level system. Fig. 1
shows the most famous three types of EIT scheme: lambda, ladder, and vee. Among these
three EIT types, the lambda type is the best candidate to obtain EIT and EIT-related effects. For
this reason, we will illustrate the EIT phenomenon by using the lambda configuration.

13

0 Q 12)

)
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Fig. 1. Schematic of EIT in (a) lambda, (b) ladder, and (c) vee-type schemes.

In the absence of the coupling field Q., absorption of the probe field is described by the blue
curve in Fig. 2(a). When the probe frequency is resonant with the transition [1> — [3>, the
probe field is strong absorbed by the medium. When we add a coupling field to the system,
the strong absorbed peak of the probe disappears at the resonant frequency due to this
coupling field (red curve in Fig. 2(a)). This means that the coupling field can modify the
absorption property of the medium, and make the optically medium transparent. The
transparent position depends on the detuning of the coupling field, and the transparent
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degree is determined by the Rabi frequency of the coupling field. The physics underlying
the EIT can be clearly explained by the dressed state theory (Scully & Zubairy, 1997): almost
zero absorption at the resonant frequency is due to the destructive interference between two
channels. Except for making the opaque media transparent, the steep dispersion
characteristic at the resonant region (see red curve in Fig. 2(b)) is another important feature
of EIT. This steep dispersion characteristic allows for control of the group velocity of the
light, and opens up a series of promising applications.
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Fig. 2. (a) Absorption and (b) dispersion of probe field as a function of probe detuning for a
three-level lambda system.

2.2 EIT in the multi-level atomic system of ¥Rb D2 line
Based on the theory of EIT in a three-level system, now we can study the EIT phenomenon
in a multi-level atomic system.

2.2.1 Model and theory

An energy level diagram of the 87Rb D2 line is shown in Fig. 3. It shows a six-level atomic
system, where F=1 (|1>) and F=2 (|2>) of 551> form two ground levels and F'=0, 1, 2, 3
(13>, |4>, |5>, |6>) of 5P3/> form excited levels. The coupling field with frequency . and
amplitude E. couples the levels [4> and |2>, while the probe field with frequency @, and
amplitude E, couples the levels [4> and |1>. The frequency detuning of the coupling and
probe is given by A =@, — @, and A =0,-0, respectively. Thus, a typical A -type EIT
scheme can be satisfied.

In the framework of semiclassical theory, the Hamiltonian for this scheme is given by
H=Ho+H;, where Hy and H; represent the unperturbed and interaction parts of the
Hamiltonian, respectively. The interaction Hamiltonian H; can be written as:

41+ Q5"

31|+,

h i,
H, :_E(mee : 5><1‘ (1)

+ Qe 4)2]+ Qe |5)(2]+ Qe[ 6)(2]+ H.C.)

where Q;; = uE, /1 is the Rabi frequency of the probe field for the transition [i>— |1> (i
=3,4,5), and Qg;, = ujEc / 1 is the Rabi frequency of the coupling field for the transition |j>
— 12> (j =4,5,6). For the 8Rb D2 line, the transitions 5Si/5, F=2—5P3,5, F'=0 and 5512,
F=1—-5P3/5, F'=3 are forbidden.

Under the rotating-wave approximation, the density matrix equation of motion for the
interaction Hamiltonian is described by:
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i 1
y=—"L - @)
p==1H.pl=5iT pl.

The susceptibility x(A,)=x'+ix" can be obtained by solving this density matrix equation
numerically under the steady state condition, where y' and y" represent dispersion and
absorption, respectively. Under the Doppler broadening which resulted from the random
motions of atoms, the total susceptibility for all excited levels becomes:

oo N 2y 2 3
zpop<AP)=I,wx(AP,v>va;e " dy ©)

where N is the atom density, v, = \/ 26T/ m = J 2RT /M 1is the most probable atom velocity, k
is the Boltzmann constant, R is the gas constant, and T is the temperature of the atomic system.
In Eq. (3), Ap and A, are substituted by Ap —@yv/c and Aq —w,v / ¢, respectively.

Fe————————————|6>
)

267 MHz

52 P3/277

780.24 nm

5°Sy/5

Fig. 3. Schematic diagram of a six-level 87Rb (D2 line) atomic system for EIT.

2.2.2 Numerical simulations and discussion

We consider the following cases:

Case I: The coupling laser is resonant with the transition 5S;/2, F=2—5P3,,, F'=1 (| 2> - |4>);
Case II: The coupling laser is resonant with the center line between the level 5P3/,, F'=1 and
5P3/2, F'=2 from level 551/, F=2;

Case III: The coupling laser is resonant with the transition 5515, F=2—5P3,2, F'=2 (|2> — |5>);
Case IV: The coupling laser is resonant with the center line between the level 5P;/», F'=1 and
5P3/2, F'=3 from level 551/, F=2;

Case V: The coupling laser is resonant with the center line between the level 5P3/,, F'=2 and
5P3/2, F'=3 from level 5515, F=2;

Case VI: The coupling laser is resonant with the transition 5512, F=2—5P3,2, F'=3 (|2> - | 6>).
Based on the density matrix equations obtained in the previous subsection, we can
numerically calculate the Doppler-broadened absorption (Fig. 4(a)) and dispersion (Fig.
4(b)) of the probe for a particular transition with different Rabi frequencies of the coupling
field, where the coupling (probe) is tuned to the transition |[4> — |2> (|4> — |1>) in case L
The parameters used in Fig. 4 are T=50°C, I'y; =0.3 MHz, I'y; =6 MHz, I'j; =5 MHz,
I's; =3 MHz, Ty, =1 MHz, T';, =3 MHz, T';, =6 MHz, Q,, =«;1/20 Qc, Qe =1/2Q,
Qeer =47 /10Qc, Ayy =72 MHz, A5 =157 MHz, Ay =267 MHz, and A, =0 MHz.
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Unlike the Doppler-free case in an ideal three-level system, where EIT line center locates at
two-photon resonance frequency, EIT detuning exists in the multilevel system of Fig. 3, even
with a small coupling Rabi frequency much less than the separation between the nearest
neighboring state |3> (see the inset of Fig. 4(a)). When the Rabi frequency of the coupling
increases, the EIT linewidth becomes wider. In particular, the EIT position is variable for
different Rabi frequencies, whereas in a three-level system, it is not. As the Rabi frequency
of the coupling field increases, the EIT position becomes more red-shifted, due to the extra
interactions with the neighboring excited levels and the different dipole moment between
different transitions.

-3 4
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Fig. 4. The absorption (a) and dispersion spectra (b) for a six-level Doppler-broadened
system (Case I).

In exploring this phenomenon further, we neglect the level |6> in the structure shown in
Fig. 3 and assume that the transition |3> — |2> is allowed for the coupling field.
Furthermore, we assume the neighboring levels are symmetrically distributed (Az4=/\45=72
MHz). By setting the same decay rates and the same dipole moments for all transitions
(Qc3p =Qc gy =Qr5 =40 MHz), the system becomes symmetrical. There is no EIT detuning
in this system, as shown in Fig. 5(a). In the 87Rb D2 line, the level 5P3/,, F'=0 is much nearer
the level 5P3/5, F'=1 than the level 5P3/5, F'=2 (A3=72 MHz, A4=157 MHz). Under this
condition, and keeping all the decay rates and dipole moments the same, we find that the
EIT position becomes red shifted (Fig. 5(b)). However, if we assume unbalanced dipole
moments (s, =243 =2y, Qczp =Qcs =Qcs /2=40 MHz) for the neighboring levels
symmetrically distributed (A3, = A5 =72 MHz), we also find that the EIT position is red
shifted as shown in Fig. 5(c). If we use another unbalanced dipole moments condition
(M3p =2usp =244y, ), then the EIT position becomes blue shifted as shown in Fig. 5(d).

By using the parameters in the 8Rb D2 line, for Cases I through VI (I: A=0 MHz;
II: Ae =157/2 MHz; III: A=157 MHz; IV: A\=157+267/2 MHz; V: A= (157+267)/2 MHz;
VI: Ac=157+267 MHz), we calculate the Doppler broadened absorption of the probe field as
a function of one-photon detuning for corresponding /\.. As shown in Fig. 6, EIT red
detuning always occurs, because in the 87Rb D2 line, the relative dipole matrix elements
are/1/20,1/2, \J7 /10 for the transitions |2> — |4>, |2> — |5> and |2> — |6>, and the
neighboring levels are unsymmetrically distributed (A34=72 MHz, A45=157 MHz, /\5:=267
MHz). In Fig. 6, the Rabi frequency of the coupling field is Q- =80 MHz, and other
parameters are same as those in Fig. 4.
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Fig. 5. The absorption spectra for a five-level Doppler-broadened system.
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Fig. 6. The absorption spectra for a six-level Doppler-broadened system for Cases I ~ VL.

3. EIT-based slow light in the multi-level atomic system of ¥Rb D2 line

Because of the steep dispersion spectrum directly resulting from the narrower EIT window
according to the Kramers Kronig relation, the group velocity of the probe pulse can be much
smaller than the group velocity in vacuum. The group velocity and the group delay are

given by:

oo €
8™ dn
n+w—

dw

1 1
=L(——=

o (v C)

“)
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Fig. 7. Group delay time of the probe as a function of the probe detuning for Cases I ~ VL.

where L is the length of the medium, c is the speed of light in vacuum, and n is given
byn=\1+x".

The neighboring excited-state-modified Doppler broadened atoms affect on the EIT line
center shifted, resulting in the so-called detuned slow light phenomenon. In Fig. 7 we
numerically calculate the group delay of each case mentioned in above, using reasonable
parameters according to the actual experimental condition. (Here we choose the same
parameters as those in Fig. 6, and let L=7.5 cm).

For all cases, the probe shows a red shift to the slow light. In Fig. 7 (a), for instance, the
maximum group delay is red-shifted for the resonant transition by ~ 4 MHz. When the
coupling field is tuned to the crossover transitions as shown in Figs. 7(b), 7(d), and 7(e), first,
the slow light phenomenon also exists; and second, the maximum group delay position is
also detuned from the crossover line center. Even when the coupling field is resonant with
the transition |2> — | 6> (Case VI) (transition |2> — | 6> is forbidden to the probe), there also
exists slow light and group delay detuning, due to the EIT effects from levels |4> and |5>.
For more detail information and experimental results see Ref. (Chen et al., 2009).

4. Slow light in N-type system of *’Rb D2 line

In this section, we investigate coherent control of the four-level N-type scheme in a Doppler-
broadened six-level atomic system of the 8Rb D2 line (Chen et al., 2009). With limited
spectral distribution of the excited hyperfine states in the 87Rb D2 line, which is confined
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by the Doppler broadening, each hyperfine state can be used for individual optical channels
for optical quantum information processing. For this application we choose
nonelectromagnetically induced absorption (EIA) schemes for the investigation of reduced
absorption spectra resulting in Mollow sideband-like enhanced transparency windows
across the EIT line center. Unlike a double-EIT system satisfied by rigid (uncontrollable) two
coupling fields applicable only for a single slow-light channel, the present scheme uses a
fixed coupling field with a variable control field, where group velocity control and multiple
slow-light channels are applicable.

N-type scheme in a Doppler-broadened six-level atomic system of the 87Rb D2 line is shown
in Fig. 8. It is similar to EIT situation, but with a third coherent field (the control field) at a
frequency w; with an amplitude Eg couples the transition |3> — |1> (5512, F=1 — 5P3/2,
F’=0) with a detuning of Ag(Ag =y —ws).

F=3 16>
267 MHz
52P e —
v F=2 |5>
157 MHz
P=1 14>
e A 7 e
F=0 Y 13>
780.24 nm IAS
0 TR
(DD
s
F=2 [2>
5283 \
F=1 [1>

Fig. 8. Schematic of a Doppler-broadened six-level atomic system of the 87Rb D2 line
interacting with three coherent fields.

In a framework of the semiclassical theory, under the rotating-wave approximation, we
obtain the following density matrix equations of motion for the interaction Hamiltonian:

. i i i
Pu = 59531(p31 - plz) + EQS41(p41 - p14) + EQS51(/751 - plS) + l—‘31:033

+ 1—‘41:044 + F51p55 + lepzz - Fle] 1
. . . . i i i
P = (A +iAyy —IAL = 1,) Py, + 59531,032 +EQS41P42 +59551psz
i

i i
- Egcupm - Egcszpls - EQC(;Zplé’

. . i i i
Pz = (lAS - 713)p13 +EQS31(p33 _pn) +EQS41P43 +59551p53’

. . . i i i i
P =g +iAyy = 74) P +§QS31P34 +EQS4|(/)44 =Pn) +59551p54 _Egcupm
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. . . i 1 1 1
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. . i i i
P35 = (iAs5 = Va5)P35 + 59531/%5 - 59551/731 - Egcszpazf

. . i i
P36 = (1A36 = V36) P36 + 59531/716 - Egcmpszr

. i i
Py = 59541(,014 —Pu)+ EQCALZ (P24 = P12) = Uiz +Tap) Paas

. . i i i i
P15 =(iAy5 = Va5)Pas + 59541,015 + EQC42p25 - 59551.041 - EQC52,042/
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Pi=Pjir Pt Pu+ P+ Pu+t Pss+ P =1 ©)

where Qg = 4;1Eg / 1t is the Rabi frequency of the control field for the transition | i>— |1>
(i = 345). T;(7;) stands for the population (phase) decay rate from state [i> to [j>,
whereT;; and TI'j;; are the population decay rates from levels [i> to [1> (i = 3,4,5), and
levels |j>to |2> (j = 4,5,6), respectively.

In order to calculate the probe absorption spectrum, the density matrix equations (6) can be
rewritten in the following form:

L= LP()+] )
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where

W =(P11,P12: P13 Pra: P15 P16 Pa1+ P21 P231 P21 P25 Pagr P31 P32 P31 P3ar P35 P36
Pa1/P127 P13+ PaarPass Pasr P51 P52 P531Ps41P551Ps67Pe1 7 Pe2r Pesr Pesr Pes )T/

and
1=(0,0,0,0,0,0,0,I'¢,,0,0,0,iQ(, /2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-iQ(, / 2,0,0,0).

The solution of Eq. (7) is given by:

P(t)=e TP (1) + j MO gt ®)

to

According to the linear response theory, the steady state absorption spectrum of the weak
probe laser can be written as:

~

A(Ap) Re[ [ }1r2<[P (t+7),PH(t )]>eiAPTer ©

where P~ = gy |1)(3| + 13| 1) (4] + 1151 | 1) (5]
and  P* = 3 |3)(1|+ tyy |4)(1|+ 445, |5)(1| are the atomic polarization operators, with
U;; being the dipole matrix elements of transition | i >- |1> (i = 3,4,5). By using the
quantum regression theory, we further obtain the absorption and refraction spectra of the
probe field:

=Re[ Z/Uzl 1iP11(°) + M, 6,021 () + M, 12,031 () + M, 1511041 ()

+ Mi,24+ip51 (2) + M; 304iP61(22) = (M 1911(o2) + M 295 (o) (10-1)
+ M 30;3(20) + M; 49;4(=) + M; 50;5(=) + M 6 Pi6(=2)))]

5
= Im[Z#nz(Mi,ipn (20)+ M; 641921 () + M 15,1931 (°) + M, 154051 (=)
i3

+ M 244iP51(0) + M 304161 () = (M 1971 () + M, 5015 () + M 50;5(0)  (10-2)
+M; 4pia(0) + M; 50;5(0) + M; 6956 (=)))],

where M = (i, +iAz, —iA, - L) and G )‘ are the steady state solutions of Eq. (6).

=135
The effects of Doppler broadening due to the atom’s thermal velocity v can be considered by
substituting Ap, Ag and A- withAp, —wyv/c, Ag—wyv/c,and A- — w0 / ¢, respectively.

Then the total absorption and refraction coefficients of the weak probe are:

2 2
e o, (11-1)

A(Ap) =" A(Ap,0) ﬁ

P
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where N is the total number of atoms, 0, =\/2kT /m =\/2RT / M is the most probable
atomic velocity, k is the Boltzmann constant, R is the gas constant, and T is the temperature
of the atomic system.

Similar as in section 2, we consider the following six types of four-level N-type systems:
Type I: The coupling light is resonant with the transition |2>— |4> (5512, F=2—5P;,,, F'=1),
while the control light is resonant with the transition |1>— |3> (5S1/2, F=1—-5P3,2, F'=0).
Type II: The coupling light is resonant with the transition |2> — |4> (55172, F=2—5P3,2, F'=1),
while the control light is resonant with the transition |1>— | 5> (5512, F=1—5P3/5, F'=2).

Type III: The coupling light is resonant with the transition |2> — |5> (55,2, F=2—5P;2, F'=2),
while the control light is resonant with the transition |1> — |4> (5512, F=1—-5P3,2, F'=1).

Type IV: The coupling light is resonant with the transition |2> — | 5> (5512, F=2—5P3/2, F'=2),
while the control light is resonant with the transition |1>— |3> (5512, F=1—-5P3,2, F'=0).

Type V: The coupling light is resonant to the center line between states |4> and |5> from
state |2>, while the control light is resonant with the transition |1>— |3> (5512, F=1—-5P3)»,
F'=0) with a small detuning J; .

Type VI: The coupling light is resonant to the center line between states |5> and |[6>from
state [2>, while the control light is resonant with the transition [1> —|5> (5512, F=1—-5P3)»,
F’=2) with a small detuning J, .

Figs. 9 (a), 9 (b), 9 (c), and 9 (d) show the numerical simulation of probe absorption spectra
for Type I, Type II, Type III, and Type IV, respectively. Figs. 9(e) ~ 9(h) are energy level
diagrams corresponding to Figs. 9(a) ~ 9(d), respectively. The number in parentheses of the
coupling C and control S stands for relative transition strength of Rabi frequency.

The parameters used in the simulations are T=25°C, T'y; = 0.01 MHz, T'5; =T, = 6 MHz,
I';; =5 MHz, Ty, =1 MHz, T'y; =T, =3 MHz,A3=72 MHz,A\45=157 MHz,/\5¢=267 MHz,
Qg =10 MHz, Q¢4 =4/1/20Q¢, Qg4 =Qg5 =+/5/12Qg, Q- = 30 MHz, Qg3 =4/1/68Q,
Qesp =Qc /2and Q¢ =+/7 /10Q-. The calculations include all level transitions in Fig. 8.
The N-type configuration yields interesting results when two-photon resonance is satisfied
between the probe and the coupling for (a) /A\p= 0 MHz, (b) /A\p=0 MHz, (c) Ap,=-157 MHz, (d)
A\p=-157 MHz, () \p=-78.5 MHz, and (f) A,=-290.5 MHz.

In Figs. 9(a) and 9(b), the applied coupling Rabi frequency is much weaker than in Figs. 9(c)
and 9(d) by a factor of V5. In Figs. 9(a) and 9(d), the Rabi frequency of the control field is
weaker than in Figs. 9(b) and 9(c) by a factor of /5/2 . Thus, Fig. 9(c) is for the strongest
pump fields, and a symmetric pair of reduced absorption lines across the EIT line center is
obtained (the dotted circle and two arrows indicate the reduced absorption lines): Mollow
sideband-like transparency windows. The center transparency is much higher than the
satellite transparencies. The symmetric sideband absorption bandwidth is comparable to the
EIT linewidth or the spectral hole width. The generation of these absorption-reduced
sidebands is due to dynamic energy splitting incurred by the control field acting on the
coupling field according to dressed state interactions (Kong et al., 2007):

’ 4
LY

(12)
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where |D> is the newly developed dressed states by the interaction of the coupling and
control fields, and Qr and Qf are effective Rabi frequencies of the coupling and control
fields, respectively, including an atom velocity factor (kv). Fig. 9(d) is similar to Fig. 9(c),
also shows double sideband transparency windows. For the rest of the combinations of Figs.
9(a) and 9(b), no distinct change is obtained for the Mollow sideband-like transparency
windows because of a weak field limit.

In comparison with Fig. 3(c) of Ref. (Kong et al., 2007), where the probe gain results in,
rather than the Mollow sideband-like transparency, Fig. 9(c) here needs to be analyzed in
more detail (see Fig. 11). Moreover the origin of the Mollow sideband-like effects which
appeared in Fig. 4(a) of Ref. (Kong et al., 2007) for the case of F. = Fz+1 by using D2
transition for the coupling but using D1 transition for the control, is the same as in Fig. 9(c)
of the present chapter for the case of Fe < F; by using only D2 transition for both fields under
the EIT condition. This condition will be discussed in Fig. 11 below.

According to Eq. (12), EIA-like enhanced absorption should be possible if Q- =Qg (see Fig.
11(c)), owing to degenerate dressed states at the EIT line center. The sub-Doppler
ultranarrow double transparency windows obtained in Fig. 9(c) have the potential of using
double ultraslow light pulses for optical and quantum information processing such as
Schrodinger’s cat generation or quantum gate operation. For enhanced cross-phase
modulation, double EIT-based ultraslow light is required. Multichannel all-optical buffer
memory is another potential application.

Fig. 10 shows numerical simulation results of an absorption spectrum when the coupling
laser Q. is tuned to crossover lines, which is a line center between levels |4> and |5> for
Fig. 10(a) and |5> and |6> for Fig. 10(b): Types V and VI, respectively. In each case the
Mollow sideband-like transparency windows appear. The control is purposely detuned by 6
MHz for Fig. 10 (a) for the transition |1> < |3> (5S1/2, F=1—-5P3/5, F'=0), and 30 MHz for
Fig. 10 (b) for |1> < |5> (5S1/2, F=1—5P3/,, F'=2). As shown in Fig. 10, the results are very
similar to Fig. 9(c). The Mollow sideband-like reduced absorption lines and the hole-burning
peak also appears on the right.

We now analyze Fig. 10 as follows, using the velocity selective atoms phenomenon. The
original model of Fig. 10(a) can be divided into two models, as shown in the energy level
diagram just below Fig. 10. The first row is for Fig. 10(a), and the second row is for Fig.
10(b). The left column is for the original level transition, and the right two columns are
decomposed for purposes of analysis. For these two columns of energy-level diagrams,
blue-Doppler-shifted atoms (middle column) and red-Doppler-shifted atoms (right column)
by A, =785 MHz or A, =133.5 MHz are considered.

In the first row (for Fig. 10(a)) for blue-Doppler-shifted atoms (middle column), the blue
shift A\ (A=157/2 = 78.5 MHz) makes both the coupling field (C) and the control field (S)
(see the middle column) resonant. This result occurs because initially the control field is red
detuned by 6; (6 MHz); thus the total shift is 72.5 MHz (78.5 - 6), which is nearly resonant to
the transition of |1> < |4>. This outcome is the same as in Fig. 9(c). The right column,
however, does not form an N-type model because of a big detuning of A;+6;. The EIT
window cannot be affected by the detuning A; +6; if two-photon resonance is satisfied.
Actually, signal reduction and line narrowing result, but do not affect the line shape of Fig.
10(a). Therefore, the result of Fig. 10(a) must be the same as for Fig. 9(c).
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Fig. 9. Numerical calculations for the probe absorption for Type I, Type II, Type III, and

Type IV.
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Fig. 10. Numerical calculations for the probe absorption for (a) Type V and (b) Type VL. (c)
and (d) are for the extended feature of (a) and (b) , respectively.

In the second row (for Fig. 10(b)), for red-Doppler-shifted atoms (right column), the red shift
A\ (A\=-267/2=-133.5 MHz) makes the coupling field (C) resonant, but blue detuned to the
control field (S) by 23.5 MHz. However, the control field is set to be red detuned by &, (30
MHz) initially; the net detuning is J; (6.5 MHz) to the control, which is red detuned from
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the transition of |1> < |4>. The two sidebands across the EIT line center are asymmetric.
The blue-Doppler-shifted atoms (middle column) do not contribute anything on the
sideband transparency windows as discussed for the first row because of too much
detuning of the control field to form an N-type model.

Figs. 10(c) and 10(d) represent expanded absorption spectra of Figs. 10(a) and 10(b),
respectively. As discussed in above, Fig. 10(c) is for resonant transition, and Fig. 10(d) is for
off-resonant transition to the control field. As shown, the off-resonant case generates
asymmetric Mollow sideband-like transparency windows with unequal window linewidth.
Hence each probe light group velocity at each sideband can be controlled effectively with
on-demand detuning of the control field. For the cross-phase modulation, this controllability
is important to induce on-demand 7 phase shift (Petrosyan & Kurizki, 2002; Paternostro et
al., 2003).

Fig. 11 represents the probe absorption spectrum versus the control (S) Rabi frequency for a
fixed coupling (C) Rabi frequency and population decay rate I'y, (from the excited state |4>
to the ground state |2>) in a closed N-type model of Fig. 9(g). In the closed N-type model of
Fig. 9(g), the atom flow rate of circulation at the probe line center should depend on both
I'j, and the control field strength. For a fast (slow) TI'y,, the probe experiences fast
circulation and has more change on the probe spectrum. On the other hand, as seen in Fig.
11(c), the dressed state interactions at a low decay rate of T'y, =1 MHz results in enhanced
absorption at the probe line center when the coupling and the control Rabi frequencies are
equal (Kong et al., 2007). As shown in Figs. 11(a) ~ 11(c) for a weak decay rate, the probe
gain may not be possible regardless of the control field strength because no population
inversion between states |5> and |1> can be obtained. Applying moderate control strength
(see the center column), however, one can obtain the probe gain once the system is ready for
a fast atom flow rate, for example, with a high decay rate of I'y, =10 MHz (see Fig. 11(h)).
Thus, the probe gain or EIT-like absorption must be understood in terms of system
parameters of both control field strength and the medium’s decay rate.

For balanced Rabi frequency between the coupling and the control, the EIA-like enhanced
absorption can be obtained in Fig. 11(c). However, this enhanced absorption feature, which
resulted from degeneracy of the dressed states (see Eq. (12)), changes into a probe gain if the
atom flow rate increases as shown in Fig. 11(f) (see also Fig. 3(c) of Ref. (Kong et al., 2007)).
The observation in Fig. 9(b) is for the intermediate case: Q- ~Qgand 1 MHz < I's, =3 MHz
< 5 MHz (see Fig. 9(f)). The decay rate falling between Figs. 11(c) and 11(f) explains a
transient feature from the EIA-like absorption to the probe gain as seen in Fig. 9(b). We
think that the broadened linewidth of the red line at A\,=0 in Fig. 9(b), may be caused by
this intermediate feature with laser jitter as well as a weak control field. As numerically
demonstrated in Fig. 11, the probe gain may not be possible in any types of the 87Rb D2 line
in Fig. 9 because the atom flow rate is not fast enough (see T'y, =1 MHz in Fig. 9(c)) unless a
very strong control field is applied. The formation of Mollow sideband-like transparency
windows in Fig. 4 of Ref. (Kong et al., 2007) and Fig. 9(c) of this chapter shows a very similar
feature based on the dressed state interactions. However, Ref. (Kong et al., 2007) is not for
EIT, while the present scheme is.

By using the Eq. (11-2), we can get the refraction coefficient of the probe. Because
of the steep dispersion spectrum resulting from EIT window and sideband-like



74 Numerical Simulations of Physical and Engineering Processes

transparency windows, we can get slow light in three channels. The group velocity is given
by Eq. (4).
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Fig. 11. Probe absorption spectra versus I'y, and Qg for the case of Fig. 9(g). (a) The
expanded feature of Fig. 9(c). (c) EIA-like enhanced absorption. (f), (h), (i): probe gain.

For the fixed atomic density, the width and depth of EIT widow are mainly depending
on the intensity (Rabi frequency) of the coupling laser. The dipole moment of transition
|2> < |5> is larger than the dipole moment of transition |2> < |4> by a factor /5,
this means we have large slow light when the coupling laser resonant with transition
|2> < |4>. However, as shown in previous part, we can get more obviously
multichannel slow light phenomena when coupling light resonant with the transition
|2> <> | 5> due to the dipole moment and decay rate relationship in 87Rb D2 line. Fig. 12
shows the refractive index and group index as a function of the detuning of the probe for
different Rabi frequency of the control field. As seen in Fig. 11 and Fig. 12, the separation
between two peaks of the Mollow sideband-like transparency windows is invariant for
the control field intensity, which means the coupling Rabi frequency Clldetermines the
splitting. The linewidth of the transparency windows, however, is controllable by
adjusting the control field intensity or its detuning (see Figs 10(c) and 10(d)). Thus, the
group velocity of the probe light at the sidebands is also controllable. That means double



Numerical Simulation of EIT-Based Slow Light in the
Doppler-Broadened Atomic Media of the Rubidium D2 Line 75

slow light-based enhanced cross-phase modulation is applicable in a much simpler
scheme than the scheme suggested in Ref. (Kong et al., 2007). By the way, applications of
the enhanced cross-phase modulation are also applicable to the EIT center line and the
spectral hole-burning line.

Qs=8

o
o
—
(=2
-~
—
O
-~

“ Qs=12

Qs=8
——Qs=10
Qs=12

Absorption (arb. units)
i
ﬁf

Refractive index (arb. units)
& o

Group index ng
g &8 8
8 8 8

0
2
s

&
8
8

o

_ .
e | YN
-180 -160 -140 " -180 -160 -140 -180 -160 -140

AP (MHz) AP (MHz) AP (MHz)

3
n

Fig. 12. (a) Absorption, (b) dispersion and (c) group index of the probe as a function of
the detuning of the probe for Type III for different Rabi frequency of control light.
N=10%0cm-3.

5. Conclusions

We have investigated EIT and EIT-based slow light in a Doppler-broadened six-level atomic
system of 87Rb D2 line. The EIT dip shift due to the existence of the neighbouring levels has
been numerically analyzed. When the coupling field is tuned to the different transition, we
have shown the dependence of group delay of the one-photon detuning of the probe. Based
on the EIT study, we also have discussed several N-type schemes in such system. The
obtained Mollow sideband-like transparency windows across the EIT line centre are sub-
Doppler broadened and controllable by adjusting the control field intensity or detuning. The
work in this chapter may deepen the understanding of EIT and the slow light phenomenon
in multilevel system and lead to potential applications in the use of ultraslow light for
optical information processing such as all-optical multichannel buffer memory and quantum
gate based on enhanced cross-phase modulation owing to increased interaction time
between two slow-light pulses.
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1. Introduction

Organic semiconductors and metal oxides (such as ZnO) have recently been recognized as a
new class of electronic materials for thin film transistor (TFT) applications such as active
matrix displays, identification tags, sensors and other low end consumer applications
(Campbell et al, 2007; Fortunato et al, 2008; Masuda et al, 2003; Nelson et al, 1998; Sandberg
et al, 2002). Owing to their low cost, large area coverage, and at par or better performance,
these materials are also considered to have enormous potential to replace amorphous silicon
for use in existing and new electronic device applications. From the device technology and
fabrication point of view, there have been rapid developments in this area over the past
decade, but the field is still very much nascent in gaining the fundamental understanding,
both, at the material and the device physics level. For example, whereas, vanderwal bonded
organic semiconductors often suffers from spatial and energetic disorder (Pope et al, 1999),
ZnO has very rich defect chemistry (Ozgﬁr et al, 2005; McCluskey et al 2009). Additionally,
they tend to have complex interaction with several surfaces, which often results in
phenomenon difficult to explain by classical theories. It is therefore critical that the research
in this area is necessarily be coupled with theoretical perspective in order to resolve several
of the important issues, which will help in further enhancing its progress. In traditional
electronics, device modelling and simulation has proven to be of great help in not only
understanding the detailed device operation but has also served as a powerful tool to design
and improve devices. The physics based device simulation is also becoming beneficial to the
research area of organic and metal oxide semiconductors TFTs, where it is effectively
predicting the device behaviour, giving insight into the underlying microscopic mechanisms
and providing intuitive information about the performance of a new material (Bolognesi,
2002; Gupta et al, 2008, 2009, 2010; Hill, 2007; Hossain, 2003; Scheinert, 2004). Its continued
involvement for explaining various device phenomenons will certainly be of great use for
future developments.
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In this chapter, we show the importance of two dimensional simulations in both the classes
of materials by addressing several common issues which are often vaguely explained by
experimental means or by analytical equations. Pentacene and tris-isopropylsilyl (TIPS) -
pentacene are taken as examples in the class of organic semiconductors, while solution
processed ZnO and Li- doped ZnO served as illustrations in the metal- oxide category.
Pentacene is a small molecule organic semiconductor and has unarguably been considered
as a high mobility material for TFT applications (Jackson). (TIPS) - pentacene, on the other
hand is a novel functionalized derivative of pentacene that incorporates the best properties
of pentacene moiety together with the solution processibility, which pentacene lacks
(Anthony). We begin with modelling of TFTs based on tris-isopropylsilyl (TIPS) - pentacene
to provide a baseline for describing the charge transport in any new material. We
completely model its electrical characteristics by considering all the aspects of contact
barrier effect, field-dependent mobility, and traps/ interface trapped charges (Gupta et al,
2008). We then highlighted the role of metal - semiconductor contacts and the effect of
dielectric- semiconductor interface structure on the device characteristics of pentacene based
TFTs, which are two of the major concerns in organic TFT (OTFT) operation. Next we
consider the stability issue in solution processible zinc oxide (ZnO) TFTs, in which we
investigated the problem of change in device characteristics when subjected to electrical
stress or exposed to air for a prolonged time. ZnO has several merits like substantially high
mobility as compared to amorphous silicon or organic semiconductors, better structural
homogeneity than polycrystalline silicon, high transparency, low cost, and ease of
processing by wet chemical routes. However, its device degradation with respect to
electrical stress and air exposure may inhibit its full exploitation due to instability and
reliability problems. We deal with this issue by considering the rich and undefined defect
states in pure and Li-doped ZnO [10], and build a physical degradation model based on the
changes in density of states (DOS) of active layers, which effectively explains the
degradation phenomenon in ZnO. In each of the examples, by providing a detailed
description of the modelling scheme, we systematically approach the problem underhand
and verify the simulated results with the experimentally obtained device characteristics.

2. Device simulation procedure

The simulator used for device modeling in this chapter is Silvaco’s ATLAS (Silvaco). ATLAS
is a two-dimensional semiconductor device simulator which incorporates the physics that
govern charge carrier transport and applies it to the dimensions of the device being studied.
For simulation, the commercial device simulator Silvaco-Atlas® is used, which predicts the
electrical characteristics associated with a specified physical structure and bias conditions by
solving systems of Poisson's equation and continuity equation that are a set of coupled,
partial differential equations as shown by Egs. 1 and 2 below:
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where ¢ is the dielectric constant, i is the potential, p is hole density, n is electron density, p
refers to holes, n refers to electrons, g is the fundamental electronic charge, G is the charge
generation rate, R is the charge recombination rate, and | is the current density which is
given considering its drift and diffusion components by Eq.3:

J, =apu,F +qD,Vp (3a)

Ju =aqpn,F +qD,Vn (3b)

where y is mobility, F is the local electric field, and D is the diffusion coefficient. This
simulator was primarily developed for silicon devices and, therefore, its applicability to
organic materials is limited. However, the simulator can still predict the qualitative device
characteristics correctly, as demonstrated by available literature [18, 26-29] on simulation of
organic devices.

To account for the trapped charge, Poisson’s equations are modified by adding an
additional term Qr, representing trapped charge. The trapped charge may consist of both
donor - like and acceptor-like states across the forbidden energy gap, where the acceptor-
like states act as electron traps and donor-like states act as hole traps. The density of defect
states, g(E), is defined as a combination of four components. Two tail bands with an
exponentially decreasing function are specified to contain large numbers of defect states at
the conduction band (acceptor-like traps) and valence band (donor-like traps) edges,
respectively. In addition, two deep-level bands for acceptor-and donor-like defects are
defined that are modeled using a Gaussian distribution. The equations describing these
terms are given as follows:

E-E
E)=N,,ex c 4a
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E,-E
grp(E)=Nppexp ” (4b)
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where E is the trap energy , Ec is conduction band energy, Ey is valence band energy, and
the subscripts T, G,A, D stand for tail, Gaussian (deep level), acceptor and donor states
respectively. The exponential distribution of DOS is described by conduction and valence
band intercept densities (Nta and Ntp), and by its characteristic decay energy (Wta and
Wrp). For Gaussian distributions, the DOS is described by its total density of states (Nga and
Ncp), its characteristic decay energy (Wca and Wep), and its peak energy/peak distribution
(EGA and EGD).
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2.1 Material parameters

In order to perform the simulations, it is necessary to define the required parameters for a
particular material. The important material parameters required for a semiconductor as an
input for the device simulation are band gap (Eg), electron affinity (Ea), effective density of
states (Nc for conduction band and Ny for valence band) and permittivity. Table 1
summarizes the selected values of these parameters for pentacene, TIPS-pentacene and ZnO,
as reported in the literature, including both theoretically calculated and experimentally
measured values. Figure 1 shows the chemical structure of pentacene and TIPS-pentacene.

O |
N /
'l

pentacene

Fig. 1. Chemical structure of (a) pentacene and (b) TIPS- pentacene molecule.

Parameter Pentacene TIPS-Pentacene ZnO Ref.
Gupta et al, 2009;
Band Gap (eV) 2.2 2.2 34 Hossain et al 2003
Electron Affinity 28 8 429 .
(eV)
Nc (cm3) 2x1021 2x1021 4.5x1024 o
Nv (cm-3) 2x1021 2x1021 9x1024 o
Permittivity 4 4 8.5 ”

Table 1. Material parameters for pentacene, TIPS- pentacene and ZnO.

3. Device modelling of TFTs made of TIPS-pentacene

TIPS- pentacence based OTFTs were fabricated in bottom contact geometry on a 100 nm thick
SiO; layer thermally grown on heavily doped n-Si wafers that also function as the gate (G)
electrode (Gupta et al, 2008). The source (S) and drain (D) electrodes consist of 5 nm titanium
adhesion layer and 100 nm gold layer onto which a solution of 2 wt% TIPS-pentacene in
toluene was drop-cast. The solution was then allowed to dry slowly in a solvent-rich
environment at 50°C to promote ordered molecular arrangement. The morphology of TIPS-
pentacene films typically consist of platelet-like structures each of which may be regarded
crystalline. The channel width Wis 1.5 mm and length L is 50 pm, respectively.

Figure 2 shows the experimental output characteristics (dotted lines ) in the forward sweep
(off to on) at gate voltage (V) from 0 to -40 V in a step of -10 V. The curves exhibit
saturation behavior at high drain voltages (Vp), but one can easily observe a non-ohmic
behavior of the drain current (Ip) in the linear region at low Vp, which is often called as
“current crowding”. This may be explained mainly by a limited carrier injection from metal
contacts to semiconductors due to an existing contact barrier @ (Hill, 2007; Tessler et al,
2001). @p is defined as the difference between the metal workfunction (Ps) and valence band
maximum (E,) of the semiconductor. Theoretically, Ti/ Au contacts provide a proper energy
level alignment with TIPS-pentacene, as the workfunction of gold lies between 4.7-5.0 eV.
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However, in literature, it is many times quoted that an interfacial electrical dipole may be
formed which can effectively change the work-function of the metal in the close proximity
of the organic semiconductor. The reasons for the formation of this interfacial dipole is often
debatable, but is believed to be the result of charge transfer, screening, or hybridization
effects caused by the complex chemical interaction between the organic semiconductor and
metal (Ishii et al, 1999; Kahn et al, 2003).
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Fig. 2. Output characteristics of TIPS-pentacene TFTs: experimental (dotted) vs. numerical
simulation (solid) results. (a) Simulated characteristics with ®p = 0 and y =0 (no field-
dependence) and (b) Simulated characteristics with ®p = 0.4 eV and y=0. In (a) and (b), the
mobility value is scaled to match the value of Ip(Vp=-40V) for V=-40V. Vs in (a) and (b) is
varied from 0 to -40V in -10V steps. (Reprinted from Organic Electronics, vol.9, D.Gupta, N.
Jeon, S. Yoo, “Modeling the electrical characteristics of TIPS-pentacene thin-film transistors:
Effect of contact barrier, field-dependent mobility, and traps”, p.1026, 2008, with permission
from Elsevier)

On the basis of the above discussion, we investigated several values of effective contact
barrier (@p=0 to 0.4eV) to reproduce the output characteristics at low drain voltages in the
output curves. However, we found that none of the values of @ can reproduce the whole
output characteristics in both linear and saturation regions over the range of Vgs used in this
study. For example, the simulated device characteristics with ®p=0 (Fig. 2a) resulted in an
ohmic behavior in the linear region, while ®p=0.4 eV (Fig. 2b) causes large reduction in
drain current and requires adjustment of mobility towards a larger value. Therefore, field
dependence of mobility in addition to contact barrier which has previously been shown to
result in non-linear characteristics of the output curves is invoked. The presence of field-
dependent mobility in TIPS-pentacene OTFTs is shown by extracting field-effect mobility of
devices with L of 10, 20, and 50 pm at several values of Vps in linear region and plotted it as
a function of (Vp/L)%5, as shown in Figure 3a (Cherian et al, 2004; Wang et al, 2003). The
logarithmic variation of mobility with (Vp/L)%> for a series of channel lengths suggests that
it follows the Poole-Frenkel (PF)-type field-dependence given by:

u=p,exp(yF) @)

where ji is the zero-field mobility, F is the electric field and y is the characteristic parameter
for the field-dependence. A linear fit [dashed line in Fig. 4] to the data yielded field-
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dependent parameters of y,= 0.035 cm2/Vs and y =1.7x103 (cm/V)%5. It is noted that this PF
field-dependence is often observed in disordered organic semiconductors. In this respect,
the field-dependence of mobility given by Eq.4 is incorporated, in addition to the contact
barrier effect, into the numerical simulation. Line curves in Fig. 3b shows the simulated
output curves which take into account both the PF mobility and contact barriers. The best fit
to the experimental data was obtained with @p of 0.38 eV, p, of 0.061 cm2/Vs, and y of
1.8x103 (cm/ V)05, respectively.
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Fig. 3. (a) Natural logarithm of field-effect mobility as a function of (Vp/L)"5. Dashed line is
a linear fit with which the field-dependent parameters are estimated to be pi,= 0.035 cm2/Vs
and y=1.7x10-3 (cm/V)05. (b) Output characteristics of TIPS-pentacene TFTs: experimental
(dotted) vs. numerical simulation (solid) results. Simulation was done in consideration of
both a contact barrier height ® of 0.38 eV, p,= 0.061 cm?/Vs and y=1.8x10-3 (cm/V)05. V¢ is
varied from 0 to -40V in -10V steps. (Reprinted from Organic Electronics, vol.9, D.Gupta, N.
Jeon, S. Yoo, “Modeling the electrical characteristics of TIPS-pentacene thin-film transistors:
Effect of contact barrier, field-dependent mobility, and traps”, p.1026, 2008, with permission
from Elsevier)

The incorporation of contact barrier and PF dependence of mobility show a reasonable
match to the output curves, but transfer curves still suffers from a significant deviation at
low | V| (curve 1 in Fig. 4a), which signifies include additional factors based on traps to
complete the TFT model. Moreover, a hysteresis loop in the Ips-Vgs transfer curve shown in
Fig. 4(a), when scanned Vs from 0 to -40 V and then back from -40 to 0 V again indicate
about the existence of traps, which may come from dielectric-semiconductor interface or
from structural defects in TIPS-pentacene films (Alam et al, 1997; Scheinert et al, 2004). This
trap-related phenomenon is simulated by assuming a spatially uniform density of trap
states in TIPS-pentacene films that is modeled by an exponential distribution of acceptor-
like traps as in Eq. 4a and 4b. It was previously discussed that oxygen is the chemical origin
of acceptor-like traps in pentacene and that acceptor-like traps provide extra hole current in
the subthreshold region in pentacene OTFTs (Alam et al, 1997; Knipp et al, 2003; Scheinert et
al, 2004; Street et al, 2002). Additionally, a positive interface trapped charge (N is included,
which may arise due to impurities such as moisture, oxygen or mobile charges in the
dielectric. It was observed that the forward sweep (curve 2) can be better reproduced with
Nta = 1.0x1018 cm=3eV-1, Wra = 0.55 eV and Nj = 8.0x10'! cm~2, while reverse sweep (curve
3) requires Nta = 8.0x107 cm=3eV-1, Wra = 0.55 eV, Nj = 2.0x102 cm=2, and p, = 0.058
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cm?/Vs. The increase in Nj; in the reverse sweep is a result of discharging of the trap states
that is relatively slow when compared to the sweep speed (= 5V/sec) used in this study and
is mainly responsible for the shift in threshold voltage. The output curves were also well
simulated with the additional incorporation of traps in TIPS- pentacene films, as shown in
Fig. 4b. Thus, this work is helpful in building an integral picture of injection, transport, and
traps in TIPS-pentacene in a context of OTFT operation, and will serve as a starting point for
further performance optimization and baseline for simulation of TFT made of any new
semiconductor.
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Fig. 4. (a) Numerical fit to the transfer curves (curve 1 is without traps, while curves 2 and 3
are plotted using trap distribution given by Eq. 4 and interface charges in forward (2) and
reverse (3) bias sweep. (b) Output curves with DOS distribution and contact barrier height
of 0.38 eV, 1,=0.052 cm2/Vs and y=1.8x10-3 (cm/ V)05 (Reprinted from Organic Electronics,
vol.9, D.Gupta, N. Jeon, S. Yoo, “Modeling the electrical characteristics of TIPS-pentacene
thin-film transistors: Effect of contact barrier, field-dependent mobility, and traps”, p.1026,
2008, with permission from Elsevier)

4. Effect of device design of OTFT

In OTFTs, there is a common issue of difference in device performance of OTFTs fabricated
in top contact and bottom contact device configurations (Gundlach et al, 2006; Gupta et al
2009; Roichman et al, 2002; Street et al, 2002). The process difference between the two device
designs is that in top contact OTFT, semiconductor is deposited prior to depositing source
and drain electrodes, while this is vice versa in bottom contact OTFT. From fabrication point
of view, bottom contact OTFT is preferred because in this design the soft organic
semiconductor can be protected from harsh chemicals, high temperatures and metal
penetration. However, usually bottom contact OTFT show inferior performance, the reasons
for which is provided on the basis of large metal-semiconductor contact resistance, irregular
deposition or poor morphology of the semiconductor films around the source and drain
contacts (Kang et al, 2003; Kymissis et al, 2001; Koch et al, 2002; Lee et al 2006, Schroeder et
al, 2003). In the bottom contact OTFT, it is possible that both the contact barrier and the
structural inhomogenities in the semiconductor play important role in affecting the charge
injection and transport characteristics. However, separating one from the other and finding
the dominant role of one of the effects is necessary to properly understand the device
operation mechanisms.
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Fig. 5. (a) Schematic of the bottom contact device showing different region of pentacene
morphology. Scanning electron micrograph of pentacene on gold contact (b) near gold
contact edge on SiO;, (c) far away from gold contact edge on SiO;, (d) on gold contacts, and
(e) Schematic of the Tum wide low-mobility-region near the source and drain contact edges
and above the contacts in bottom contact devices. (Reprinted from Organic Electronics, Vol.
10, No. 1, D. Gupta, M.Katiyar, Deepak, “An analysis of difference in device behavior of top
and bottom contact devices using device simulation”, pp. 775-784, 2009, with permission from
Elsevier)

The experimental devices consist of n+ Si as gate, 40 nm gold as source and drain electrodes,
200 nm SiO; as gate insulator, and pentacene as the organic semiconductor. Pentacene films
with thicknesses of 50 nm are deposited by thermal evaporation at the rate of 0.03-0.04
nm/sec at substrate temperature of 65°C. The channel length (L) for both top and bottom
contact devices is 30 pym and their widths (W) are Imm and 3.6mm, respectively. The
experimentally obtained data in the output curves were also corrected in order to remove
the effects of gate leakage and contact resistances (Gupta et al, 2009). To correct for the gate
leakage, half of the gate current is added to the obtained drain current at each gate voltage.
In order to correct the device characteristics for the metal-semiconductor contact resistance,
device parasitic resistance (Rp) is calculated as a function of gate voltage following the
procedures provided in the well- known transmission line method (TLM). Rp estimated by
TLM method is then used to correct the drain currents to their equivalent values in a device
with no metal-semiconductor contact resistance. From the as measured curves, the extracted
field effect mobility for top and bottom contact devices are 0.125 cm2/Vs and 1.74x103
cm?/ Vs, respectively, in the saturation region. After the gate leakage and contact resistance
correction, an effective mobility of 0.14 cm2/Vs and 3.2x103 cm2/Vs is obtained for the top
and bottom contact devices, respectively.

The simulation data obtained from the top and bottom contact device structures overlay on
each other, which implies that device structure by itself is not responsible for causing any
difference in the two device structures. The other factors then must lay down to the
differences in the manner that two devices are fabricated. In bottom contact devices, it is
possible that a shadow cast by metal during evaporation of pentacene could lead to unfilled
corners at the source/drain contacts, which in turn could result in lower effective device
mobility. This kind of situation in the simulation is incorporated by adding a vacuum layer
of dimensions 50 nm x 40 nm adjacent to the source and drain electrodes. However, the
resultant drain currents are only slightly affected by the unfilled corners, as the current find
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a way of charge injection/extraction through the top surface of the source and drain
electrodes, respectively. The next possibility, i.e. the effect of morphology of pentacene is
then deeply investigated in order to find out the reasons for inferior performance of bottom
contact devices. The investigation of pentacene morphology in the different regions of the
bottom contact device showed a marked variation in grain sizes. From the scanning electron
micrograph of the device in Fig. 5, one can clearly see that the large grain structure far away
from the source/drain contact edges changes into a small grain structure as one move closer
to the edge of the channel, near the gold electrodes. On SiO,, the average grain size is 0.57
pm and on the source and drain contacts, the grain size is 0.15 pm. The reason for such a
difference in morphology is attributed to the difference in surface energies of metal and
dielectric layers.
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Fig. 6. (a) Comparison of the experimental (gate leakage and contact corrected) and the
simulated output curves. The mobility of the low-mobility-region is 1.5x10-4 cm/# /Vs and
bulk mobility of pentacene is 0.14 cm?2/Vs. (b) Surface potential profile 1 nm above the
dielectric surface (source, drain and channel lie between 0-30 pm, 60-90 pm and 30-60 pm,
respectively). (Reprinted from Organic Electronics, Vol. 10, No. 1, D. Gupta, M.Katiyar,
Deepak, “An analysis of difference in device behavior of top and bottom contact devices
using device simulation”, pp. 775-784, 2009, with permission from Elsevier)

The above mentioned structural features are then incorporated in the simulation model (as
depicted in Fig. 5) where a low-mobility-region near the source and drain contact edges and
above the contacts is defined in the bottom contact device. The low-mobility-region has
lower mobility as compared to the rest of the pentancene, and the reason for such an
assignment is attributed to the significantly lower grain size as compared to the bulk film.
Keeping the bulk mobility as 0.14 cm?2/Vs, several values of mobility of the low-mobility-
region are tried and a mobility value of 1.5x10-4 cm2/Vs yields a good comparison with the
measured data, as shown in Fig. 6a. The effective mobility calculated from this structure is
1.8x10-4 cm2/ Vs, which closely matches with the experimental value. In order to analyze the
effects of low-mobility-region, potential profiles between the source and drain contacts at 1
nm above the dielectric interface (along a horizontal dashed line in the inset of Fig. 7b) are
taken. Figure 6b shows that almost all the applied potential is accommodated in the low-
mobility-region, forcing its effect on the overall device characteristics. The current density
profiles (Fig. 7a) taken across the bottom contact device depicts that charge injection and
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extraction takes place from the lower region of metal contacts (within 5 nm region from the
insulator) forcing the current to pass through the low-mobility region and causing a large
potential drop. As an analogy, the low-mobility-region in the top contact devices is also
introduced below the source and drain electrodes, which spans across the full thickness of
pentacene. As an example, a mobility value of 1x10-3cm?2/Vs for the low mobility region is
taken, but no significant change in the device behaviour could be observed. The reason for
this can be understood from the current density profile in Fig. 7b, which clearly indicates
that charge is injected from the side/corner of the contacts, bypassing the low-mobility-
region. Thus top contact devices would be less susceptible to morphological variations.
Therefore, the simulation determines that the possible cause of differences observed in
bottom and top contact devices could be due to differences in pentacene morphology
leading to low mobility regions near the contacts.
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Fig. 7. Schematic diagram for the path of the current flow in pentacene film (line with the
arrow) in a (a) bottom contact device having a low-mobility region adjacent to and above the
source and drain contacts and in a (b) top contact device having a low-mobility-region
under the source and drain contacts. (Reprinted from Organic Electronics, Vol. 10, No. 1, D.
Gupta, M.Katiyar, Deepak, “An analysis of difference in device behavior of top and bottom
contact devices using device simulation”, pp. 775-784, 2009, with permission from Elsevier)

5. Effect of pentacene thickness

The next issue of interest is dependence of device performance on the semiconductor
thickness. Theoretically, the device mobility should be independent of semiconductor
thickness in TFTs, because the field effect causes all the charges to be accumulated in few
nanometers of the semiconductor near the insulator, thus nullifying the effect of the rest of
the film (Dinelli et al, 2004; Horowitz et al 2003). However, practically, this is a common
observation and the reasons for such an occurrence are explained in terms of organic
semiconductor morphology, semiconductor-insulator interfaces, and access resistances
(Dodabalapur et al, 2005; Granstrom et al, 1999; Kiguchi et al, 2005; Schroeder et al 2003).
Figure 8 shows the mobility dependence of top contact OTFTs based on pentacene for
pentacene thicknesses of 10, 20, 35, 50, 80 and 100 nm, respectively. The source and drain
electrodes are made of gold, gate is n+ silicon, insulator is 200 nm thick SiO,, channel width
Wis 1.5 mm and length L is 30 pm, respectively. According to the experiments, the mobility
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increases until a pentacene thickness of 35 nm, and then it decreases. However, the
simulated device characteristics are only very slightly affected by pentacene thickness (Fig.
8a), and not to the extent of experimental observations. Since there is a sufficient mobility
variation with pentacene thickness experimentally, it is imperative to incorporate
additional features in the simulation in order to model the device characteristics
accurately. In the simulation, the physical behavior related to charge transport in the first
few layers adjacent to the dielectric is not modeled. However, it is important to note that
the first few layers, where most of the charge transport occurs, may have different
electronic properties as compared to the bulk film. In literature, it has been demonstrated
that the pentacene film near the dielectric may have several structural defects,
discontinuities, low surface coverage and may also be affected by charge-surface phonon
interaction caused by the polar oxide dielectric (Houilli et al 2006; Kiroval et al, 2003;
Puntambekar et al, 2005; Sandberg et al, 2002; Stassen et al, 2004; Steudel et al, 2004; Ruiz
et al 2005; Veres et al, 2002). Apart from this, inter layer surface potential between the
pentacene layers and polarization interaction energy of the charge in the dielectric may
force the mobile carriers more towards the vicinity of the dielectric (Houilli et al 2006;
Kiroval et al, 2003; Puntambekar et al, 2005). Based on this discussion, following two
points emerge (Gupta et al, 2009):

a. A monolayer of pentacene may have low mobility in comparison to the bulk pentacene.

Hereafter this layer is referred as low mobility layer.
b. Mobile charge, for reasons not precisely understood, is preferentially forced to this low
mobility region.

These effects are then systematically introduced in the simulation model for a better match
with the experimental data. To evaluate the effect of the low mobility layer at the insulator
surface, 1.5 nm thick layer (roughly the thickness of a monolayer of pentacene) at the
dielectric interface is incorporated, as depicted in the inset of Fig. 8b. The simulations were
performed while keeping the bulk mobility value of 0.28 cm2?/Vs, and lowering the mobility
of the low-mobility-layer down to several decades. However, the extracted mobility from
the simulation increases until pentacene thickness of 35 nm and then becomes almost
constant (Fig. 8b ). This simulated behaviour is significantly different than the experimental
results and thus the second effect, ie charge confinement towards dielectric is investigated
subsequently.

Since the commercial simulator in use here does not contain any models to physically
simulate the carrier confinement, an energy band offset between the low mobility layer and
bulk pentacene is intentionally introduced in the simulation model in such a way that it
facilitates the charge migration towards the low mobility layer. Figure 9a shows the energy
band diagram of pentacene film depicting the energy band offset between the low mobility
layer and the bulk pentacene. To force the mobile charge towards the low mobility layer, the
electron affinity (Ea) value of the low mobility layer (Ea1) is reduced in comparison to its
value in the bulk pentacene (Ea2), while keeping the band gap (Eg) value same for both the
regions. The combined effect of low-mobility-layer and the charge confinement induced by
the above mentioned method is such that the effective mobility of the device reduces
significantly as compared to the bulk mobility value. For example, for a pentacene thickness
of 50nm, a bulk mobility value of 0.28 cm2/Vs, a low-mobility-value of 0.014 cm2/Vs and an
energy band-offset of 0.1 eV produce an effective mobility value of 0.09 cm?/Vs. With
several trials and errors, it was observed that the quantitative behavior of mobility up to 35
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nm is better matched for an energy band offset value of 0.11 eV, the mobility of low mobility
layer as ~1x104 cm?/Vs and bulk mobility as 1.3 ecm2/Vs (Fig. 9b). However, as shown in
Fig. 9b, after 35 nm, no match could be obtained, which is discussed based on the pentacene
morphology variation with thickness, in the next paragraph.
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Fig. 8. (a) A comparison of the mobility values for the experimental and the simulated
devices and (b) between experimental and simulated devices on incorporating the low-
mobility-layer as a function of pentacene thickness. (Reprinted from Organic Electronics, Vol.
11, D. Gupta, Y. Hong, “Understanding the effect of semiconductor thickness on
device characteristics in organic thin film transistors by way of two dimensional
simulations”, pp. 127-136, 2010, with permission from Elsevier)
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Fig. 9. (a) Schematic diagram of the energy levels in the low mobility layer and bulk of the
pentacene film (b) Comparison of experimental and simulated mobility value as a function
of pentacene thickness. The mobility of the low-mobility-layer is 1x104 cm2/Vs and bulk
mobility is 1.3 ecm2/Vs. The energy band offset value is 0.11 eV. (Reprinted from Organic
Electronics, Vol. 11, D. Gupta, Y. Hong, “Understanding the effect of semiconductor
thickness on device characteristics in organic thin film transistors by way of two
dimensional simulations”, pp. 127-136, 2010, with permission from Elsevier)
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Fig. 10. A comparison of simulated and experimental (a) output curves and (b) mobility
value as a function of pentacene thickness. The mobility of the low-mobility-layer and bulk
pentacene is taken as 1x104 cm?2/Vs and 1.3 cm?/ Vs, respectively. The energy band offset
value is 0.11 eV. The trap concentration is taken as 4x1016 cm=3 for 50 nm thick film and
6x1016 cm- for 80 and 100 nm thick films, respectively. (Reprinted from Organic Electronics,
Vol. 11, D. Gupta, Y. Hong, “Understanding the effect of semiconductor thickness on device
characteristics in organic thin film transistors by way of two dimensional simulations”, pp.
127-136, 2010, with permission from Elsevier)

The investigation of morphology of pentacene films revealed that grain size and crystal
structure varies as a function of thickness. It is found that until pentacene thickness of 35
nm, the average grain size remains ~0.85 pm. After further increasing the film thickness, the
grain size reduces and reaches to 0.15 pum for the 100 nm thick pentacene films. The
reduction in grain size causes more grain boundaries to appear, which acts as trapping
centers for the mobile charge. The bulk traps in the region above 35 nm of pentacene
thickness are then introduced, as illustrated in the inset of Fig. 10b. It was found that the
donor type traps with a trap level of 0.4eV, produces a reasonable match between the
experimental and simulated curves, if bulk donor trap concentration of 4x101¢ cm-3 for 50 nm
thick film and 6x106 cm- for 80 and 100 nm thick films, respectively, are chosen. Figure 10a
and 10b show the superimposed experimental and simulated results of the output curves
and mobility values, respectively. Therefore, this study indicates that OTFT devices face
several non-regularities, which are expressed in the form of low-mobility of the pentacene
layers that are associated with the dielectric, existence of energy band offset between the
interface layers and the bulk, and the bulk traps due to the structural defects like grain
boundaries. The combined effect of these features causes the extracted mobility to depend
on the film thickness, which in an ideal case should have been absent. It also signifies the
importance of optimizing the thickness of organic semiconductor in order to have enhanced
as well as reliable device performance.

6. Device stability of solution processed ZnO TFTs under electrical stress

Device stability of TFTs under electrical stress is highly important in view of practicality,
which is not only important in estimating the device lifetime but also in understanding the
instability mechanisms. Electrical instability in TFTs is typically measured by threshold
voltage (Vr) shift that occurs when the device is subjected to constant voltage or drain current
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for certain duration (Wehrspon et 2003, Jahinuzzaman et al, 2005). During constant gate bias,
the channel charge and hence the on current continuously decreases to eventually saturate the
Vr shift. On the other hand, during constant current stress the applied gate bias continually
adjusts itself in time to keep the drain current constant. Also important is the post-stress
relaxation characteristics of the device, where Vr shift occurring during the stress state is
recovered in the off-state. From a practical point of view, this situation occurs in displays or
integrated circuits where the device is temporarily switched on, and then switched off.
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Fig. 11. Measured (symbol) and simulated (line) transfer characteristics showing initial
curve, after stressing for 5000 sec and after relaxation for 5000 sec for stress values of (a) 20 V
of gate bias, (b) 50 V of gate bias and (c) 5x10-¢ A of drain current and (d) 3x10-> A of drain
current.

The ZnO-TFT is fabricated in a simple bottom-gate top-contact configuration. In this device,
n++ silicon wafer served as gate electrode, Al as source and drain electrode, 100 nm-thick
SiO; film as gate insulator onto which sol-gel processed ZnO films are spin-coated. The sol is
prepared by making a 0.5 M solution of zinc acetate in the solvent mixture of DMF and
methoxy-ethanol (volume ratio=3:2) (Gupta et al, 2008) and then spin-coated twice on the
wafer. The films were pyrolyzed at 500°C for 1 hour, yielding polycrystalline films with an
average grain size of 300 nm. The channel width is 1.0 mm and channel length is 50 pm,
respectively. During electrical stress measurements in bias stress mode, a voltage is applied
only to the gate while keeping the source and drain grounded in order to create a uniform
electric field across the channel interface. During the current stressing, a constant current
was applied to the drain keeping the gate and drain connected in a diode-connected
configuration, while keeping the source grounded. This measurement configuration allows
automatic adjustment of the gate/drain to source voltage (Vgs=Vps) to achieve a constant
drain current. The relaxation characteristics are measured soon after the stressing period of
5000 sec, while keeping all three terminals grounded. Figure 11a - 11d shows the obtained
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stress- recovery characteristics of the device in the gate bias (gate bias value = 20V and 50V)
and current stress (current stress value= 5x10-¢ A and 3x105 A) mode, respectively. As
shown in Fig. 11, for both the gate bias and current stress, the on- current decreases and
transfer curves shift to more positive gate voltages leading to a positive threshold voltage
shift. Additionally, off- currents (Vg = -30 V) are reduced to a greater extent than the on
current (Vg = 40V) in the stressing period of 5000 sec, which causes an improvement in the
on/off ratio of the device. Also, to be noted is that in the first 2x103 sec of the stressing
period approximately, the change in the off current and subthreshold slope (S) is maximum,
after which this variation is not that significant. However, under both the voltage and
current stress conditions, the transfer curves keep on shifting to the higher positive gate
voltage values without change in S value. The mobility values, on the other hand, continue
to decrease for the whole stress period. During the recovery period, the transfer curves shift
in a parallel way towards negative value for approximately 2000 s, and then S/off-current
values increase slowly on relaxing the devices subsequently. However, the initial on drain-
current values could not be fully recovered in the measured period of 5000 sec.
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Fig. 12. Variation in density of states (DOS) during stress and recovery period for stress
values of (a) 20 V of gate bias, (b) 50 V of gate bias and (c) 5x10¢ A of drain current and (d)
3x10- A of drain current.

In order to investigate deeply into the microscopic details of the instability mechanisms, we
performed two dimensional device simulations by modelling ZnO films with a continuous
and spatially uniform density of states (DOS) throughout its volume. This assumption is
based on the fine grain structure of sol-gel ZnO films, which can be considered as composed
of small crystalline grains embedded in an amorphous matrix. This kind of structure may
produce a large defect density within the grain boundaries as well as in the grains. The total
density of states g(E) is assumed to have exponential distribution of donor (D) like and
acceptor (A) like defects that follow the equations 4a and 4c, respectively. This DOS model is
attractive because of its simplicity and accuracy and has been used as the basis for many
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studies on metal oxide based TFTs (Hossain et al, 2003, 2004; Fung et al, 2009; Ming et al,
2009) . Additionally, traps at the semiconductor - dielectric interface are assumed, which are
defined by their concentration (Ni) and energy level (Ei). Also shown in Fig. 11 are the
simulated transfer characteristics using the above mentioned DOS model during stress and
recovery. The obtained DOS distribution is shown in Fig. 12, and the values of Nj and E;; are
listed in Table 2. It is to be noted that since off-current region in the transfer curves
invariably exists in the negative gate voltage region, donor states have to be kept near
conduction band edge (above mid-gap) in order to reproduce the observed behavior. The
donor-like states near the mid-gap tend to be a recombination-generation center, helping
electrons jump to the conduction band and increasing the leakage current. The acceptor
states, on the other hand, extend far below the conduction band and reach up to the mid-
gap, which signifies the importance of deep lying defect states in affecting the transfer
curves during the stress measurements. Also, important is the role of deep donor traps (1.0 -1.2
eV from the conduction band) at the semiconductor-dielectric interface, which better
reproduce the simulated behavior of the off-state leakage currents. On the basis of this model,
Nt increases by approximately 24 - 30% after stressing the devices for a period of 5000 sec from
the virgin state, but is not affected much during the recovery period of 5000 sec.

Initial Stress (5000 sec) Recovery (S000 sec)
h—:[ (Clﬂ'j} Ei'. (EY} N'_T ':Eln_z} E] {E.'V:I Nl‘. (cm'ij E)'t (E“'Tj
20V 8.4x101 1.13 1.1x101 1.16 1.0x1012 1.16

S50V 0.3x101 1.05 2x1om 1.03 1.1x1012 1.05
Sx10%A  7.3x101 1.09 9.1x104 11 8.0x101 1.1
ixl10°A  8.1lxlo" 1.09 9. 3x104 1.08 8.3x101 1.08

Table 2. Simulated values of Nj; and E;; of the donor- like traps at semiconductor-dielectric
interface for the initial state, after stressing for 5000 sec, and after relaxation for 5000 sec for
different gate bias and drain current stress conditions.

The obtained DOS, as in Fig. 12, indicates that acceptor and donor states both vary from
virgin to stress state and from stress to recovery state , however, acceptor like defect states
are higher in density than the donor like defect states in the region near the conduction band
(approximately 0.7 eV from the conduction band). The acceptor like defects also have
pronounced effect in this region and affects the transfer curves significantly. Further, it was
observed that the variation in Nta and Ntp values from virgin to stress state and from stress
to recovery state has more dominant effect than the change in slope values (Wra and Wrp).
An estimate of change in values of N4 and Nrp from virgin to stress state and from stress to
recovery state revealed that Nta increases approximately 40% more than Ntp after stressing
the device for a period of 5000 sec from the virgin state, for all the gate bias and current
stress levels. This variation in Nra is also significantly more than donor-like states during
the recovery period. These results make it clear that acceptor like defects are substantially
influential in affecting both the stress and recovery characteristics. This also explains the
decrease in S value, positive Vr shift and relatively larger reduction in off currents on
stressing the devices, because acceptor like defects strongly affects both the subthreshold
and above threshold region.
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Based on the simulation results, it is possible to correlate the electrical stress effect to the
inherent defect chemistry of ZnO, ambient and to the ZnO-dielectric interface. In ZnO
crystals and films, oxygen vacancies and zinc interstitials are identified as the two most
common metastable defects (Ashrafi et al, 2007; (")zgiir et al, 2005). Whereas, positively
charged oxygen vacancies can behave as acceptor-like traps, zinc interstitials act as donor
defects. The oxygen vacancies tend to trap free electron carriers by a long-range coulomb
interaction, which causes a positive shift of the transfer curves. Additionally, oxygen or
water may get adsorbed on the surface of films, which predominantly create acceptor-like
states in zinc oxide based materials (Chen et al, 2010; Li et al, 2005). Though further detailed
studies are needed to distinguish between the operating mechanisms affecting the
instability, we can say that the main degradation mechanism is the trapping by acceptor-like
defects in upper half of the bandgap of solution processed ZnO, and donor-like trap
generation at the semiconductor-dielectric interface.

7. Effect of Li- doping on environmental stability of ZnO TFTs

In solution processed Li-doped ZnO TFTs, Al serves as source and drain electrodes, ITO as
gate electrode, and 215nm thick aluminium-tin-oxide (ATO) as insulator. The channel length
(L) is 50 pm and width (W) is 1000 pm, respectively. Li-ZnO is coated from a precursor
solution following thermal pyrolysis (Nayak et al, 2009). The investigated Li concentrations
were 0%, 15% and 25%, and the device characteristics were checked in fresh state and after 7
days of exposure. First, the similar methodology developed in section 6 was adopted that
used density of states as exponential distribution of both acceptor and donor -like traps.
However, for any set of values of Nta, Ntp, Wra and Wrp, it was observed that simulated
results using this DOS model was only partially successful for ach amount of Li doping.
More specifically, the subthreshold region which is highly dependent on donor like traps
showed a large amount of deviation in the exposed states. Therefore, another model which
Gaussian distribution of both acceptor and donor - like traps is adopted to define the DOS
states in these devices. This model too cannot reproduce the experimental device
characteristics fully. Based on the above observations, a DOS model that combines
exponential distribution of acceptor (A) like defects and Gaussian distribution of donor (D)
like defects are employed that follow the expressions in Eq. 4.

Figure 13a and 13b shows the optimized fittings to the experimental transfer
characteristics, using the DOS model in Eq. 4, for 0%, 15% and 25% Li-doped ZnO,
respectively, in the fresh state and after 7 days of air exposure. The fitting parameters are
listed in Table 3 and the obtained DOS distribution is shown in Fig. 14. As can be seen
from Fig. 14, the density of acceptor states near the conduction band tail edge is higher,
while they are significantly lower as one goes deep down the bandgap, for the devices
with 25% Li- doping in comparison to devices without Li-doping. This arises due to the
different slope values (Wra) for devices with and without Li-doping. On the other hand,
the donor states are significantly lesser in the devices with 25% Li-doping as compared to
the devices without doping, in both the fresh and exposed states. Also, in the devices
without Li-doping, both the donor and acceptor states increase on exposing the devices to
the environment. However, in the case of devices with 25% Li-doping, the donor states
showed a slight increase, while acceptor states decrease slightly, on exposing the devices.
This might also arise due to some error in fitting parameters. On the whole, however, the
devices with 25% Li-doping are not significantly affected by the environmental exposure.
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Therefore, these results can partially explain the better performance of Li-doped TFTs in
terms of improved subthreshold slope, better on/off ratio and improved air stability than
the undoped ones. Also, it can be clearly said that Li- doping is effective in controlling the
defect states in ZnO TFTs, which helps in improving its stability when exposed to the air
for a prolonged period of time.
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Fig. 13. Comparison of simulated and experimental transfer curves for (a) undoped
and (b) 25% Li- doped ZnO TFTs in fresh state and after 7 days of air exposure at drain
voltage of 40 V.
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Fig. 14. The obtained density of states (DOS) distribution in the fresh state and after 7 days
of air exposure for (a) undoped and (b) 25% Li- doped ZnO TFTs

0% Li 25 % Li

Fresh Exposed | Fresh Exposed
Nr1a (em3) | 52x1018 | 7x1018 4.2x10% | 3.5x10%9
Wra (eV) | 04 0.4 0.2 0.2
Nep (cm3) | 1.3x1018 | 2.4x1018 | 4.8x10'7 | 5.1x1017
Ecp (eV) 0.5 0.5 0.5 0.5
Wep (eV) | 0.2 0.2 0.2 0.2

Table 3. List of fitting parameters for undoped and 25 % Li -doped ZnO TFTs
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8. Conclusion

In conclusion, the important role of device simulations in a better understanding of the
material properties and device mechanisms is recognized in TFTs based on organic and
metal oxide semiconductors. The effect of physical behaviour related to semiconductor film
properties in relation to charge injection and charge transport is underlined by providing
illustrations from pentacene, TIPS- pentacene and ZnO based TFTs. The device simulations
significantly help in explaining the complex device phenomenon that occur at the metal-
semiconductor interface, semiconductor-dielectric interface, and in the semiconductor film
in the form of defect distribution.
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1. Introduction

The gyrotron backward wave oscillator (gyro-BWO) is an efficient source of frequency-tunable
high-power coherent radiation in the microwave to the terahertz range. It has attracted
significant research interest recently due to its potential applications in many areas such as
remote sensing, medical imaging, plasma heating and spectroscopy. A gyro-BWO using a
helically corrugated interaction region (HCIR) has achieved an even wider frequency tuning
range and higher efficiency compared with a conventional gyro-BWO with a smooth-bore
cavity. This is due to the existence of an “ideal”eigenwave in the HCIR with a large and
constant group velocity when the axial wave number is small.

The eigenwave has a TEj;-like cross-sectional electric field distribution. For such a field
structure it is favourable to use the second harmonic of the electron cyclotron frequency
of an axis-encircling electron beam to interact with the wave. The advantage being that it
lowers the required magnetic field strength by a factor of two whilst avoiding undesired
parasitic oscillations. Therefore a cusp gun was used to produce an annular, axis-encircling
electron beam with high velocity ratio, « (ratio of transverse velocity to axial velocity) for the
gyro-BWO. This has inherent advantages over a solid beam for energy recovery due to the
reduced beam power density in the collector surface making high power (~ kWs) continuous
wave (CW) operation of a gyro-BWO more feasible. The overall efficiency of the gyro-BWO
is further improved by using a four-stage depressed collector which recovers the energy from
the spent electrons of the gyro-BWO.

The 3D particle-in-cell (PiC) code MAGIC was used to simulate the electron beam trajectories,
beam-wave interaction and wave growth in the gyro-BWO. The trajectories of the electrons
were simulated including their emission from the cathode, acceleration in the cusp gun
region, transportation and interaction in the helical interaction region and deceleration in the
depressed collector. Through the simulations a thermionic cusp electron gun was optimized
to produce a 40 keV, 1.5 A, large-orbit, electron beam with an axial velocity spread Av; /v,
of ~8% and a relative a spread Aa/«a of ~10% at an a value of 1.65. When driven by such
a beam the gyro-BWO was simulated to have a 3 dB frequency bandwidth of 84-104 GHz,
output power of 10 kW with an electronic efficiency of 17%. The optimization of the shape
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and dimensions of each stage of the depressed collector using a genetic algorithm achieved
an overall recovery efficiency of about 70%, with a minimized back-streaming rate of 4.9%
and maximum heat density on the electrodes of 240 W/cm?. An overall efficiency of 40% was
therefore simulated for the gyro-BWO.

A number of gyro-BWOs have been investigated both in theory and experiments. Two such
experiments at the Naval Research Laboratory (Park et al., 1990) and the National Tsing
Hua University (Kou et al., 1993) operating at the fundamental cyclotron harmonic and
the fundamental mode of a smooth cylindrical waveguide demonstrated impressive voltage
and frequency tuning up to 5% and 13%, respectively with a very high efficiency of nearly
20% at power levels of up to 100 kW at Ka-band frequencies. High-power, high-frequency,
coherent radiation sources, especially in the range of mm and sub-mm wavelengths, have
attracted significant research interest recently due to their desirable applications in many
areas such as remote sensing (Manheimer et al., 1994), medical imaging (Arnone et al., 1999),
plasma heating (Imai et al., 2001) and spectroscopy (Smirnova et al., 1995). Gyro-devices are
promising candidates to fulfill such a demand due to the advantages of their characteristic
fast wave interaction.

A HCIR has been demonstrated with a wave dispersion that has a near constant group velocity
in the region of small axial wavenumber (Burt et al., 2005; 2004; McStravick et al., 2010;
Samsonov et al., 2004). This allows broadband microwave amplification to be achieved in
a gyrotron traveling wave amplifier (gyro-TWA) and wide frequency tuning in a gyro-BWO
without compromising interaction efficiency and output power when compared with its
counterparts using cylindrical smooth-bore waveguides (Bratman et al., 2007; 2000). Previous
experiments using such a microwave system at Ka-band achieved an output power of ~1 MW,
an efficiency of 10%, a frequency tuning band of 15% using a 20 ns, 300 keV electron beam
(Bratman et al., 2001). Recently a relative frequency-tuning band of 17% at X-band with 16.5%
electronic efficiency was achieved (Denisov et al., 1998; He et al., 2005) at the second harmonic
of the electron cyclotron mode using a three-fold HCIR and an axis-encircling electron beam.
Research projects involving a W-band gyro-BWO using a HCIR are in progress at the
University of Strathclyde. The setup of the device is shown in Fig. 1.

i,
Clisp Interaction region \
electron Depressed collector
gun

Fig. 1. The experimental setup of the W-band gyro-BWO.

Presented in this chapter is the simulation and optimization of the W-band gyro-BWO by
using MAGIC (Goplen et al., 1995; Ludeking et al., 2003), (MAGnetic Insulation Code) by
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Mission Research Laboratory. MAGIC simulates the interaction between charged particles
and electromagnetic fields as they evolve in time and space from their initial states. Time and
three-dimensional space are divided into finite grids. For each time step, the electromagnetic
fields in the three-dimensional grids are solved from the Maxwell equations which are
discretized with centered difference approximations. Then the complete Lorentz force
equation was used to advance the momenta and coordinates of all charged particles in the
simulation under the solved electromagnetic fields. The continuity equation is solved to map
charge and current densities onto the grid, which are then used as sources for Maxwell’s
equations on the next time step. Self consistently solving Maxwell equations, the Lorentz
equation and the continuity equation provided a basis for simulating beam field interaction
problems.

The simulation and optimization of a thermionic cusp electron gun which generates an
annular, axis-encircling electron beam is discussed in section 2. The simulation of the
beam-wave interaction in the HCIR is presented in section 3. The simulation and optimization
of an energy recovery system through a 4-stage depressed collector is given in section 4.
Although it is possible that the integral system of the gyro-BWO, including the electron
emissions from the thermionic cathode, beam acceleration in the cusp gun region, propagation
in the beam-wave interaction region and deceleration in the depressed collector region and
the beam-wave interaction itself can be simulated in one run, the time required to run the
whole simulation would be too long. However the total simulation time can be reduced
significantly by dividing it into three separate simulations as the system requires different
coordinate resolution at different stages.

2. Simulation of the cusp electron gun

2.1 Introduction

The electron gun choice, design and quality of the transported beam is a very important aspect
of any gyro-device. Designing the ideal diode is a complicated process taking into account
many different factors including: space-charge forces, the magnetostatic and electrostatic
fields and electron emission process. This section discusses the design of a cusp electron gun
with numerical and analytical analysis of the cathode and electron beam.

2.2 Electron guns

There are a number of electron gun types but in gyro-devices there are three which are most
common; the Magnetron Injection Gun (MIG), Pierce-like gun with “kicker”and the cusp
electron gun. The MIG gun produces an annular electron beam where the electrons have
small orbits each having its own axis, shown in Fig. 2(a). This type of gun is ideal for gyrotrons
operating at the fundamental waveguide mode but operation with a harmonic mode is prone
to parasitic oscillations. Many high-frequency gyro-devices operate at harmonics (Cooke
et al., 1996; Idehara et al.,, 2004; Wang et al., 2000; 1994) to allow for the use of a larger
cavity diameter and to decrease magnetic field strength by a factor of s, the harmonic number.
An axis-encircling electron beam is ideal for harmonic gyro-devices due to its good mode
selectivity as the beam-wave coupling requires that the azimuthal index of the waveguide
mode, m to be equal to s (Chu, 1978). There are two such electron guns that can generate
this type of beam, the Pierce-like gun with a “kicker”and the cusp electron gun. The
Pierce-like gun with a “kicker ”produces a solid pencil beam which travels through a magnetic
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“kicker”that induces azimuthal rotation so the beam will travel in a helical path through the
interaction region as illustrated in Fig. 2(b). The disadvantages of this electron gun is that
operation in the CW mode is difficult and the spent solid beam would cause a “bright spot”on
the collector surface and hence damage the system. The cusp electron gun can generate an
axis-encircling annular electron beam (see Fig. 2(c)), through a mechanism of beam generation
which supports CW operation and allows the « of the beam to be controllable by changing the
magnetic field strength at the cathode.

OGRS

(a) MIG gun beam (b) Pierce-like gun beam with a (c) Cusp gun produced beam
“kicker”

Fig. 2. Electron beam profile of various electron gun types.

2.3 Principle of the cusp electron gun

The cusp electron gun operates by utilizing two solenoids, one at the cavity region the other,
with an opposite direction, just behind the cathode. The combination of magnetic fields
results in a cusped magnetic field region in front of the cathode. When the electron beam
passes through the cusp, the canonical angular momentum, described in Eq. 1, must be
conserved. However, the vector potential Ay is related to the amplitude of the magnetic field
so the equation would then become unbalanced. In order to conserve the momentum, vy must
change and so the electron beam will rotate around the axis of symmetry.

Py = mugr + qrAy 1)

where r is the radius of the electrons, m is the electron mass, g is electron charge, Ay is the
vector potential.
It is possible to show (He et al., 2008) that the value of a can be described approximately
through Eq. 2.

I 12| we|wy 2

vz VE — r2|we|wy
where V) is the total electron velocity, w = eB/ym,, subscript “c” and "0” denote the cathode
and the downstream uniform magnetic region. 7 is the Lorentz factor of the electrons at the
downstream region, and e and i, are the charge and rest mass of the electron respectively.
The radius of the electrons in the cavity magnetic field region can be calculated by using Eq. 3
(Chen, 1974).
Tc

— ° 3
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2.4 Previous research on cusp electron guns

Initially, transport of an electron beam through opposing magnetic fields (so called “magnetic
cusp”) was investigated in the 1960’s (Schmidt, 1962; Sinnis & Schmidt, 1963) for plasma
confinement applications. Schmidt described a threshold for magnetic mirroring of an
electron stream and the effect on the electron trajectory passing through the cusp region. The
main conclusion of this paper, with respect to microwave devices, is that the electrons gain
azimuthal velocity around the axis of symmetry due to conservation of canonical angular
momentum. This theoretical prediction was proven through experimental measurement
(Sinnis & Schmidt, 1963). Building on the work of Schmidt et al., continuous efforts and
progress have been made through both theoretical analysis and experimental study in the
generation of the cusp-based electron beam sources (Destler & Rhee, 1977; Rhee & Destler,
1974). Special attention was paid to methods which can produce an ideal sharp cusp shape
by using complex arrays of magnetic coils, magnetic poles and possibly magnetic material
inside the cathode (Jeon et al., 2002; Nguyen et al., 1992; Scheitrum et al., 1989; Scheitrum &
True, 1981). This culminated in a ”state-of-the-art” cusp gun in 2000 by Northrop Grumman
(Gallagher et al., 2000) which generated an electron beam of energy 70 kV, current 3.5 A and
velocity ratio 1.5 with a small axial velocity spread of 5% at a magnetic field of ~0.25 T.
Recently gyro-devices have begun to adopt cusp guns as their electron beam sources notably
in lower frequency harmonic gyro-devices (McDermott et al., 1996).

A cold cathode cusp gun was developed for an X-Band gyro-TWA at the University of
Strathclyde in 2007 (Cross et al., 2007). The methodology of the design was validated through
results from numerical simulations, from MAGIC (MAGIC, 2002), agreeing well with the
experimental results. A thermionic cusp gun was subsequently designed and numerically
optimized based on this proven methodology. The MAGIC script used in this chapter is a
derivative of the previous successful numerical code.

MAGIC allows different models of electron emission, for instance thermionic and explosive
emission. The thermionic emission process was modeled using the Richardson-Dushman
equation in Eq. 4.

0 —pw
Je = AcTiets™ 4
where T is the temperature of the emission surface and kg is the Boltzmann constant. The

work function, ¢, was chosen to be 1.5 eV — the value found for previous cathodes using a
tungsten cathode impregnated with barium.

2.5 Application requirements and design goals

Two primary goals of the design of the cusp electron gun were: a) to produce an electron beam
of suitable quality to drive the gyro-BWO over the required magnetic field range; and b) to
produce a design simple enough that this could be manufactured with fewer complications
compared with usual electron guns. Consideration of the construction of the diode played
an important role in the design process, as the cathode would be small radially and thus
sensitive to manufacturing tolerances. The aim was that a good quality electron beam would
be produced even with some imperfections in cathode shape. The gyro-BWO parameters
as-well-as electron beam power, voltage, current and « were found through beam-wave
interaction simulation of the interaction region and analytical calculations of the dispersion
profile (see section 3). The targeted performances of the electron gun and gyro-BWO are
given in Table 1. The axial velocity spread target of approximately less than 15% was chosen
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from previous investigation on the effect of velocity spread in helical waveguide gyro-devices
(Denisov et al., 1998) where the velocity spread from 0% to 15% had little effect on the
performance.

Beam parameter targets Gyro-BWO
Beam power 60 kW|Max power (CW) 10 kW
Accelerating voltage |40 kV |Efficiency 17%
Beam current 1.5 A |Frequency band W-band
Velocity ratio («) 1 to 2 |B-field range 1.65-21T
Axial velocity spread | <15% |Frequency tuning range |84 — 104 GHz

Table 1. Performance targets for the cusp electron gun and gyro-BWO.

The beginning of the design process focused on the emitting strip design and from this the
focus electrodes and anode can be shaped around it. A schematic diagram of the general
cathode geometry can be seen in Fig. 3, with some dimensions highlighted that are used in
this discussion. The required dimensions of the emitter are: radial thickness of the strip, the
average radius and the inclination of the surface. When a very narrow strip is chosen, a high
quality beam can be produced, as the magnetic field variation — one of the leading causes of
velocity and a spread — across the emission surface can be reduced at the expense of current
density. Excessive current density, > 10A/cm?, can lead to a vastly reduced cathode lifetime;
therefore, the thickness of the strip is chosen to produce a current density less than this limit.
In this initial design stage this value was chosen to be approximately 8A /cm?.

Fig. 3. Schematic diagram of the cusp electron gun cathode.

The emitting strip is inclined at an angle, as shown in Fig. 3. The average radius of the emitter
can be chosen through the desired « value required. This is given through Eq. 5.

DCVO
(a2 +1) |we| wo

Te = ©®)
The final design has the values of R,1=5.79 mm, R,»=6.29 mm and emission current density
Je=6 A/cm?. A schematic diagram of the cusp gun geometry is shown in Fig. 4 with the Pierce
principles (Pierce, 1954).



Numerical Simulation of a Gyro-BWO with
a Helically Corrugated Interaction Region, Cusp Electron gun and Depressed Collector 107

Fig. 4. Schematic of the simulation setup.

2.6 Numerical simulations

2.6.1 Simulation parameters

The geometry of the diode is simulated on a discrete spatial grid so this can lead to slight
inaccuracies in the modeling when the mesh is not fine enough; however, if the system is
meshed properly the results should be very accurate. The cathode can be visualized in both
2D, Fig. 5(a), and the full 3D, Fig. 5(b).

o
©

o
<
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20
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(a)
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Fig. 5. Geometry of the cusp electron gun (a) 2D image with magnetic field profile overlaid
and (b) 3D image.

It should be noted that although the simulation is 3D, to decrease the run-time the electron
beam was only emitted from 4 points around the 360 degree axis. This still yields accurate
results, as the system is axially symmetrical. In Fig. 5(a), the magnetic field is overlaid
showing the position of the cusp point in relation to the geometry of the cathode and anode.

In Fig. 6 a more detailed view of the cathode, focusing electrodes and anode is shown. It
should be noted that at the cathode there are two small gaps above and below the emitting
surface (coloured brown). These gaps stop contact between the cathode and the focus
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electrodes, so that the barium in the cathode would not migrate into the focusing electrodes.
Such migration could lead to unwanted electron emission from the focusing electrodes.

20 Cathode

Inner
electrode

0 10 20 30 40

Fig. 6. A close-up view of the diode as illustrated by MAGIC.

2.6.2 Simulation of B-field profile

The magnetic coils defined in MAGIC are an approximation formed by a single line of coils
at the average radius. The initial coil position is defined and then through a “do-loop” each
subsequent coil is created. The magnetic field profile is critical to the operation of a cusp
electron gun and the quality of the electron beam. An extra coil, so-called “shim coil”, was
added to each end of the cavity solenoid. The shim coils sharpen the magnetic field profile
and reduce the total length of the solenoid and lower the electrical power consumption. The
parameters of the solenoids are given in Table 2.

Reverse coil|Cavity coil|1%t Shim coil[2"d Shim coil
Start position -6 cm 12.3 cm 12.3 cm 31.6 cm
Average radius 8 cm 2.84 cm 4.92cm 492 cm
Wire width 2.2 mm 2.2 mm 2.2 mm 2.2 mm
Number of turns 10 103 15 15
Coil current 713.28 A 3257.8 A 4654 A 465.4 A

Table 2. Properties of the solenoids defined in MAGIC simulation code

It is important to note that while the current of the reverse coil is equal to 713.28 A in each
turn, in practical terms, this would be distributed over a 4 layer coil with 178.32 A per layer.
Similarly, for the cavity coil 3257.8 A is equal to 14 layers of 232.7 A per layer. The region of the
flat top magnetic field strength has to match the length of the helically corrugated waveguide.
The full magnetic field profile of the solenoid is shown in Fig. 7.

The magnetic fields at the cathode and the cavity solenoids are adjustable factors that
determine the « value of the electron beam in the beam-wave interaction region. The spread
of magnetic field over the emission surface is one of the biggest factors that contributes to
velocity spread in the electron beam. The magnetic field vectors in the cusp region are shown
in Fig. 8. This shows the direction and amplitude of the magnetic field that the electrons travel
through from the cathode to the anode aperture. It also shows the position of the cusp point,
in this case, at 4.3 mm from the middle point of the front face of the emitter.
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Fig. 8. Magnetic field vectors in the cathode-anode region.

2.6.3 Equipotential surfaces and electric field enhancement

The electron beam is focused as a result of the shape of the equipotentials in the diode region.
The equipotentials are controlled through the shape of the focusing electrodes and the anode.
The equipotentials in the diode region, Fig. 9(a), show us how the electrons are focused by the
shape of the anode and cathode surface. The inner and outer focusing electrodes are used to
convey the electron beam into the anode aperture.
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Fig. 9. Electric field profile in the cathode-anode region.

The magnitude of the electric field at the cathode and anode gap is a concern for electron
gun design due to the possibility of electric field breakdown. The electric field at the cathode
surface is required to be lower than the breakdown threshold in vacuum in order to ensure the
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cathode is not damaged during operation. The axial electric field (E;) when the accelerating
voltage is at its maximum 40 kV was recorded and is shown in Fig. 9(b). This field was below
the breakdown threshold of 10 MV/cm. When the cathode is constructed the sharp edges
would be rounded and so the areas of high electric field would be reduced.

2.7 Simulated electron trajectories

The electron trajectories after emission from the cathode are one of the most important
diagnostic tools as these show if the electrons pass through the beam tube, where possible
interception may occur, the thickness of the electron beam at the plateau magnetic field region
and if the electron beam can pass through the backstop filter (the smallest diameter area
of the tube). The electron trajectories through the diode and into the downstream uniform
B-field region are shown in Fig. 10(a). These pictures show that the electrons pass through
the waveguide geometry and form an axis-encircling beam, a view of which is clear to see in
Fig. 10(b). There is small quantity of reflected electrons shown in this trajectory plot. These
electrons amount to less than 1 mA, compared to the electron current of 1.5 A. At the end of the
beam tube the thickness of the electrons beam can be calculated from the electron trajectories
at the point of maximum magnetic field. The exact properties of this beam can be seen in Table
3. This shows that this beam has a thickness of ~0.2 mm corresponding to a spread of 60%.

Z (mm)

Fig. 10. MAGIC simulated electron trajectories at 1.82 T cavity field showing (a) the beam in
the 7 — z plane with the full geometry and (b) cross-sectional shape at the downstream region.

2.7.1 Electron beam current and voltage

The design of the waveguide interaction region determined the required electron beam
current and energy. Simulation of these properties along the waveguide allows one to measure
the beam power produced by the electron gun and compare that to the ideal target set for the
electron gun. In the simulation a slowly rising accelerating voltage pulse was applied to the
cathode and focusing electrodes. The rise time of the pulse was 1 ns with a steady voltage



Numerical Simulation of a Gyro-BWO with

a Helically Corrugated Interaction Region, Cusp Electron gun and Depressed Collector 111
Minimum radius 0.229 mm
Maximum radius 0.421 mm
Average radius 0.325 mm
Radius spread (Ar/r)| 59.2%
Envelope ripple 15%

Table 3. Properties of the electron trajectories at the magnetic field plateau region, B, =1.82 T.

after that time. The current emitted from the cathode was simulated to be 1.57 A. This value
was found to be 1.5 A emitted from the face of the emitter and 0.07 A from inside the gap
between the emitting surface and the focusing electrode, which was not transported along the
beam tube. The electron beam current at the downstream uniform magnetic field is a vital
diagnostic as this allows calculation of the transported electron beam current to show what
percentage of the electron beam is reflected or transmitted. The measured current downstream
corresponded to 99.9% of the beam emitted.

2.7.2 Pitch angle and axial velocity spread

The two parameters of the electron beam that determine the interaction strength and efficiency
of the gyro-BWO are the spreads in «, and axial velocity. The « value of the electron beam is
a measure of the ratio of perpendicular to parallel velocity « = v, /v (He et al., 2001). Since
it is only the transverse velocity, that participates in the interaction, this is a measure of the
amount of the electron beam energy that is available for the interaction. The axial velocity
spread will result in broadening of the electron cyclotron frequency and therefore excessive
axial velocity spread will give rise to low beam-wave interaction efficiency.

The a value sought is variable between 1 and 2 but centered on ~1.65. The a value as a
function of the axial length along the beam tube was observed in the simulation and is shown
in Fig. 11. Clearly shown here is the rise in the a value along the waveguide tube due to the
rise in magnetic field. There are two stray beam lines shown here with a very large « value.
These are emitted from inside the cathode gap and for the purpose of these calculations are not
taken into consideration when estimating the average « value, and its spread. The calculated
« values can be seen in Table 4 showing a spread of 10.7%.

Velocity Ratio, o
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Fig. 11. Simulated « of the electron beam as a function of axial position. Measured with a
magnetic field at the uniform downstream region of B, =1.82 T.

The axial momentum of the electrons (normalized to the electron rest mass m.) along the axial
ordinate is shown in Fig. 12. This shows the trajectories of the two electron beamlets with a
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Minimum « value | 1.56
Maximum « value| 1.74
Average « value | 1.65
« spread (Aa/a) |10.7%

Table 4. Simulated a values at B, =1.82 T.

much lower axial momentum than the rest of the electron beam consistent with the simulated
results for a. If it is assumed that there is a negligible difference in electron mass from the
lower and upper values of the momentum then the axial velocity spread can be found from
Eq. 6.

Avy;  Amv, AP,

(6)

Vz,av MmMvzav Pz,av

where P, is axial momentum, P, ;4 is average axial momentum, v; is axial velocity and v 4y is
average axial velocity.
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Fig. 12. Simulated axial momentum of the electron beam as a function of axial position.

Analysis of the axial momentum at the maximum magnetic field allows calculation of the
axial velocity spread and the values obtained are given in Table 5. The axial velocity spread is
within the design target.

Minimum axial velocity value [5.97x10” ms~!
Maximum axial velocity value [6.47x10” ms~!
Average axial velocity 6.22x10” ms~!
Axial velocity spread ( Av,/v) 8.1%

Table 5. Values of axial momentum and corresponding axial velocity spread at the plateau
magnetic field region, B, =1.82 T.

2.7.3 Variation of magnetic field and different combinations of electron beam properties

The interaction frequency can be tuned through adjusting parameters of the electron beam
such as accelerating voltage, a as well as the cavity magnetic field strength. In order to change
the « values of the electron beam, the magnetic field at the cathode can be varied. The a value
as a function of magnetic field at the cathode is shown in Fig. 13 at a fixed cavity magnetic
field of 1.82 T. The a value can be analytically calculated through Eq. 3 and agrees well with
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the simulated value. The effect of varying the a value changes the electron beam dispersion
line so different interaction frequencies can be achieved.

’ N

2.6
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I I ]
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-6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3
Magnetic field at the cathode (mT)

Fig. 13. a value as a function of magnetic field at the cathode surface. The cavity magnetic
field is kept constant at B, = 1.82 T.

While the cathode magnetic field is adjusted in order to change the value of  over the range
of 1 to 3, the electron beam qualities (x and axial velocity spreads) will be affected. This can
be seen in Fig. 14 where the optimum electron beam qualities are obtained at the designed
cathode magnetic flux density of -4.97 mT corresponding to an « of 1.65.
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Fig. 14. Simulated values of axial velocity and « spreads as a function of cathode magnetic
field strength.

The designed beam voltage is 40 kV but the gyro-BWO is tunable in frequency when the
voltage changes so the electron gun had to transport the beam through the drift tube with
an acceptable beam quality over a range of voltages. It was found that when the beam voltage
varied from 35-45KkV the large orbit beam was still fully transported to the downstream
cavity region. However, with a constant magnetic field configuration the beam a would be
different and so some adjustment in the reverse coil strength would have to be made through
the range of voltages. The « value was 2.46 and 1.35 for 35 kV and 45 kV respectively.

The electron beam quality also varies over this voltage range, as shown in Fig. 15. The plateau
of the electron beam quality curve is centered on the designed voltage of 40 kV showing
the optimized electron gun design. Throughout the range of voltages the electron beam
maintained an acceptable quality, defined by the axial velocity and a spreads.
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Fig. 15. Simulated axial velocity and « spreads as a function of the beam voltage. The
average o and cavity magnetic field is kept constant at 1.65 and 1.82 T respectively.

If a constant « value is required when the voltage is changed the cathode magnetic field, and
so reverse coil current, would have to be adjusted for each value of accelerating voltage. The
range of cathode magnetic field that kept a at 1.65 with a cavity magnetic field of 1.82 T is
shown in in Fig. 16.
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Fig. 16. Variation in cathode magnetic field required to keep a constant « (= 1.65) as the
applied voltage is swept from 35 kV to 45 kV.

Changing the cavity magnetic field strength allows the frequency of interaction to be changed
to any desired frequency over the full range of the gyro-BWO interaction, 84 — 104 GHz. This
has a stronger effect on the electron beam line than any other method of frequency adjustment.
The axial velocity and a spreads were simulated in the operating cavity magnetic field region
and is shown in Fig. 17. Since the geometry of the cusp electron gun was optimised for the
centre frequency of 94 GHz i.e. at a magnetic field of 1.82 T, the simulation at a different
magnetic field would be an un-optimised setup so by changing some of the variables such
as the reverse coil position, cavity coil position and applied voltage these results can be
improved.

To obtain a constant value of « in the gyro-BWO operating regime which required a cavity
magnetic field of 1.65 T — 2.1 T the cathode magnetic field must be changed in accordance
with the change in the cavity magnetic field. The value of the magnetic field at the cathode as
a function of the cavity magnetic field required to generate an « value of 1.65 is shown in Fig.
18.
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Fig. 17. a and axial velocity spreads as the cavity magnetic field is swept from 1.65 T -2.1 T.
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Fig. 18. Values of the magnetic field at the cathode required to keep a constant « (= 1.65) as
the cavity magnetic field strength is changed.

2.8 Summary

In this section the cusp electron gun was designed, simulated and optimized to produce an
axis-encircling annular beam of 40 kV, 1.5 A with an « of 1.65. The design was originally
simulated in MAGIC and optimized through changing the diode geometry (Donaldson et al.,
2010). The optimized design produced an electron beam with low axial velocity and « spreads
at the center magnetic field strength with acceptable quality over the full magnetic field tuning
range. Other factors were investigated for instance the scope for tuning « in the range of 1 to
2 and the potential for voltage tuning of the output frequency. In each case the electron beam
passed through the beam tube without scraping or mirroring and had tolerable spreads in
axial velocity and « spreads. The optimized electron gun design produced an electron beam
of high enough quality in order to drive the beam-wave interaction within the gyro-BWO
(Donaldson et al., 2009; Li et al., 2010).

3. Beam-wave interaction in gyro-BWO

3.1 Background
The surface of the helically grooved waveguide of the gyro-BWO can be represented in
cylindrical coordinates 7, ¢, z as follows

r(¢,z) = ro + I cos(m¢ + kz) 7)
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where r( is the waveguide mean radius, [, /7 and k = 27/d are the amplitude, azimuthal and
axial numbers of the corrugation respectively, and d is the corrugation period. If a three-fold
helical waveguide is used (77 = 3) the corrugation would provide effective coupling of the
TE»; near cut-off mode and the TE;; traveling mode if the corrugation period is chosen so
that the Bragg conditions

k=~ ki, ma+mp =1m (8)

are satisfied, where kq; is the axial wavenumber of the TEj; mode at the cutoff frequency
of the TE;; mode and m 4 and mp are the azimuthual index of the near cutoff and traveling
modes respectively.

The resonant coupling of the waves corresponds to the intersection of their dispersion curves
or, more exactly the intersection between the TE;; mode and the first spatial harmonic of
the TE;; mode (Fig. 19) and would result in an eigenwave with a TEjp;-like cross-sectional
electric field distribution. For such a field structure it is favourable to use the second harmonic
of the electron cyclotron frequency for beam-wave interaction, which has the advantage of
lowering the required magnetic field strength by a factor of two. The axis-encircling beam
resonantly excites only co-rotating TE,;;; modes with azimuthal indices equal to the cyclotron
harmonic number, /1 = s. The helical symmetry allows transformation of a selected direction
of azimuthal rotation to a selected axial direction, in this case a wave which is propagating
in a counter direction with respect to the electrons’ axial velocity. The electron beam’s linear
dispersion characteristic can be adjusted with respect to the wave dispersion over a rather
broad frequency range by changing either the axial guide magnetic field or the electron
accelerating potential.

3.2 Dispersion and linear theory

The resonant coupling of the waves corresponds to the intersection of their dispersion curves.
If the amplitude of the corrugation is small compared with the wavelength, the dispersions
of the resultant eigenwaves, i.e. w; and w, in the helical waveguide, can be calculated
approximately by the following equation from analytical perturbation theory (Denisov et al.,
1998)

(hz725)(h7Ag+5/h0)+202/h0 =0 )

where all the symbols (also those that appear later) retain the meanings defined in ref.
(Denisov et al., 1998). One of the eigenwaves, i.e. w;, having a near constant negative
group velocity and small axial wavenumbers in the designed operating frequency range, is
the operating eigenwave of the interaction.
The electron cyclotron mode, normalized in a manner consistent with Denisov et al 1998, can
be written as

0 —hBo =sAy (10)

The output frequency of the gyro-BWO interaction can therefore be calculated from the
intersection of the dispersions of the eigenwaves and the beam cyclotron mode (Fig. 20).

For the highest interaction efficiency the gyro-BWO should be operated in a region of
small axial wavenumber so that the detrimental effect of the Doppler broadening of the
electron cyclotron line because of spread in axial electron velocity is minimized. Therefore
a larger gradient of the eigenwave w; is favourable for increasing the interaction efficiency
and frequency tuning range. For a gyro-BWO using a smooth cylindrical waveguide,
the backward wave exists only in the negative half of the axial wavenumber, but for the
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eigenwave wj in the helical waveguide the backward wave exists in both the negative and
positive range of wavenumbers. Therefore the frequency tuning range of a gyro-BWO using
a helical waveguide would have much wider frequency tuning range compared with its
smooth-bore counterpart. The gradient of w; can be adjusted by altering the period and the
corrugation amplitude of the helical waveguide.
In analogy to gyrotron interactions and ref. (Denisov et al., 1998), it is possible for one to
derive the gyro-BWO beam-wave dispersion
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[(1? = 26)(h — Ag + 6 /ho) + 207 /] [h — (5 — Apy) / Bzo]?
= C3(h = Ag +6/ho) {1+ 35— (6 — M) /Bo]}

where g and B are the beam initial pitch angle and relative velocity in the longitudinal
direction respectively. The interaction frequency of the gyro-BWO can be calculated by solving
the uncoupled beam-wave equation by setting C = 0 in Eq. 11, i.e. the intersection of
the eigenwave w; and the beam dispersion line. In a general case, Eq. 11 has four d(h)
roots, with two real roots being the "hot" (electron beam present) eigenwaves, and a pair
of conjugate complex roots, which are degenerates of the electron cyclotron mode due to
the CRM interaction at and near the intersection when the beam parameters are suitably
chosen. The negative imaginary number of the solution (Fig. 20, dashed line showing one
such interaction for the gyro-BWO) gives rise to the oscillation that grows with time in the
cavity and hence allows the starting condition and the small signal growth of the oscillation
to be analyzed.

The dispersion of the operating eigenwave can be found by measuring the phase evolution
of a counter-rotating circularly polarized wave when it propagates through the waveguide by
using a vector network analyzer (VNA). It can also be measured by detecting the polarization
angle of a linearly polarized wave when it propagates through the waveguide by using a
scalar network analyzer (SNA)(Burt et al., 2004). In Fig. 20 the measured results using the
VNA method are shown and compared with the results simulated by MAGIC using the same
operating eigenwave. In the simulation using the MAGIC code, a left-polarized circular wave
of one frequency was injected into the right-hand helical waveguide, and a component of the
electric field inside the waveguide was measured along the axial direction. The measured field
was then numerically analyzed and the axial wavenumber of the eigenwave was therefore
obtained for that frequency (He et al., 2011).

(11)

3.3 Simulation of the beam-wave interaction

The dimensions of the helical structure used in this simulation were designed to support an
operating eigenwave of a higher group velocity to achieve a higher electronic efficiency and
wider frequency tuning range. MAGIC simulation of the performance of the gyro-BWO using
this helical waveguide as the interaction region when driven by an electron beam of energy
40 keV, current 1.5 A and « 1.65 are presented.

The radiation of the gyro-BWO can be coupled out at two positions; One from an output
coupler at the upstream side of the corrugated waveguide, the other through an output
window at the downstream end. In the latter case the output window will act as a boundary
of the cavity and therefore some reflection from the window (which can be as low as 1%) is
desirable for the oscillation to start. Both the simulations and previous experiments at X-band
(He et al., 2005) confirmed that the performance of the gyro-BWO is the same when using the
two different output methods. In the simulation of the W-band gyro-BWO, the output power
resulted from the beam-wave interaction in the helical waveguide region which was absorbed
by a “microwave absorber”at the upstream location. This was achieved by defining a region
of finite conductance as shown in Fig. 21. The output power of the gyro-BWO could therefore
be simulated by measuring the total ohmic loss in this conductive volume. It was found in the
simulation that the electron beam parameters are unaffected by this region.

An electron beam with parameters similar to that simulated and measured in the experiment
was used, i.e. beam energy, current and beam pitch angle, guided by a magnetic field of
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Fig. 22. The electron beam trajectories of an axis-encircling solid beam.

about 2.1 T in a beam tube of radius 1.3 mm in which the lowest order mode was cut-off and
propagating in the downstream (right) direction. For the gyro-BWO to oscillate, the electron
beam should rotate in the opposite direction to the helical structure. At the downstream end, a
Bragg reflector was used to completely reflect any microwave signal back into the interaction
region. At the same time the spent electron beam can pass through the Bragg reflector
region. The electron beam (with all its physical parameters and the electromagnetic wave
(with all its parameters) were then recorded at the cross-sectional plane located downstream
from the Bragg reflector. This allowed the simulation of the depressed collector for energy
recovery purpose as discussed in the later sections. A snap shot of the simulation showing
the geometry and electron beam trajectories of the axis-encircling solid beam that was used in
the experiment is shown in Fig. 22. When the magnetic field was 1.82 T, electron beam energy
40 keV, current 1.5 A, pitch a 1.65, a simulated power of 10 kW and frequency of 94 GHz were
obtained. A typical simulated output spectrum and mode pattern are shown in Fig. 23. The
simulated output power as a function of frequency is shown in Fig. 24. A 3 dB tuning range
of 84-104 GHz was predicted from the simulation of the W-band gyro-BWO.
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Fig. 23. Characteristic of microwave output from the gyro-BWO.

4. Simulation of the depressed collector

4.1 Principle of the depressed collector

The overall efficiency is an important parameter for high-power microwave sources. For a
given RF output power, higher efficiency means less primary power is needed. Microwave
sources with higher efficiency have less heat dissipation which means smaller cooling systems
are needed. High efficiency is essential in space applications and some ground-based
applications, such as deep space communication and mobile installations.

Several methods have been developed to improve the efficiency of the beam-wave interaction.
One is to change the profile of the waveguide to obtain a higher electronic efficiency, such as
employing a slot structure, helical structure as used in this chapter, slice structure, and so
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Fig. 24. The output powers and frequencies at different cavity magnetic fields.

on. The other way is to use a tapered magnetic field or tapered wall radius instead of the
constant ones. (Ganguly & Ahn, 1989; Nusinovich & Dumbrajs, 1996; Sprangle & Smith, 1980;
Walter et al., 1996) Another option for enhancing the efficiency is to recover energy from the
spent beam using single or multi-stage depressed collectors. It has been shown that this is
an effective way to improve the overall efficiency of microwave tubes, such as conventional
klystrons, BWOs and TWTs (Neugebauer & Mihran, 1972; Wilson et al., 2007).

Depressed collectors are passive converters that can transfer the kinetic energy of the spent
electrons into potential electric energy. “Depressed”means that the collector has a depressed
potential as compared with the main body of the tube. The electrons lose their kinetic energy
when passing through the retarding electrostatic field and finally land on the collector surface
with a significant reduction in kinetic energy. They produce a loop current which results in a
power recovery from the spent electrons (Sterzer & Princeton, 1958).The collected power by a
depressed collector can be written as

N
Py = Z Vil (12)
n=1

Here N is the number of stages and Vj;, I, are the potentials and collected current on the
n'"_stage electrode, respectively. For a given energy distribution of the spent electrons,
increasing the number of stages results in the collection of more power. However, the design
of depressed collectors becomes more complex and the cost increases as the number of stages
increases.

By introducing a depressed collector with a collection efficiency of #¢o; = Peor / Pspent_peam and
output efficiency ¢,,; which is the ratio of P, and the total microwave power in the cavity,
the overall efficiency of the microwave tube with an electronic efficiency 7, can be calculated
using

Pout _ Eoutle

Py — Py 17’7COZ(177]C’)

Ntot = (13)
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For those inherently low efficiency high power microwave devices, depressed collectors
with efficiencies higher than 80% can significantly improve the overall efficiencies. For a
moderately efficient source with an electronic and collection efficiency of 30% and 80%,
respectively, with the use of depressed collection the overall efficiency could be increased
to 61.4% when ¢€,,; = 0.9, increasing the overall efficiency by a factor of 2.

To design a depressed collector with high efficiency, several issues need to be considered
before commencing simulations.

a) Determining the potentials and the geometry of the electrodes to reach optimum collection
efficiency. b) Secondary electrons. c) Heat dissipation on the electrodes.

4.2 Potentials on the electrode

In the design of the energy recovery system, the energy distribution of the electron beam was
exported from the simulation of the gyro-BWO using MAGIC, as shown in Fig. 25. Table
6 shows the optimum potentials and the collection efficiency when a different number of
stages are used. In this calculation, it was assumed that all the electrons were collected on the
electrodes without consideration of secondary emissions. The minimum electrode potential
was set to be the minimum energy of electrons to avoid backstreaming and the maximum
potential was set to be the electron beam voltage which was 40 kV in the gyro-BWO device.
It was found that when the number of stages increased beyond four, the collection efficiency
did not significantly increase. Four stages were therefore chosen as a compromise between
the collection efficiency and complexity of the system.
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Fig. 25. Energy distribution of the spent beam under the condition of 40 kV electron beam
voltage, 1.5 A beam current, beam & of 1.6, with a cavity magnetic field of 1.75 T.

4.3 Geometry of the depressed collector and optimization process

The collection efficiency calculated in section 4.2 assumed that all the spent electrons were
sorted by the electric and magnetic field in the collection region. In practice, the distribution
of the electric field is determined by the geometry of the electrodes. Proper design of the
electrode geometry not only acts to sort the electrons with different kinetic energies, but also to
decrease the possibility of secondary emission and to avoid the backstreaming of the electrons
in the collector. One way to choose a good geometry is to use a searching algorithm such as
a random walk and genetic algorithm to optimize the parameters (Ghosh & Carter, 2007).
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No. Potentials on electrodes (kV) Collection
(relative to ground voltage) efficiency
1 (924 - - - - - - 28.8%
2 |-9.24|-25.70| - - - - - 63.6%
3 |-9.24|-22.14|-36.57| - - - - 75.7%
4 |-9.24|-19.55|-27.31|-40.00| - - - 82.5%
5 1-9.24|-18.86|-24.96|-30.78|-40.00| - - 85.7%
6 [-9.24|-16.98|-22.14|-27.22|-32.66|-40.00| - 87.5%
7 1-9.24|-16.82|-21.33|-25.47|-29.53|-34.23|-40.00| 88.7%

Table 6. Collection efficiency for different number of stages.

An optimization program integrating a genetic algorithm was developed to optimize the
depressed collector geometry parameters by controlling the MAGIC code without the need
to know the source code. The optimization program firstly created an input file by inserting
the new set of parameters to the template input file for MAGIC. Then MAGIC was invoked to
simulate the new geometry and the result was read by the optimization program to evaluate
the parameters. The flow diagram of this process is shown as Fig. 26 (Zhang et al., 2009a).

—>| Create new set of parameters|

| Create new input file from template file |

| Run MAGIC |

IS running finished?

No

Fig. 26. Flow diagram of the optimization program.

The basic geometry of an electrode is shown in Fig. 27. It is determined completely by 4
parameters, the length of the electrode (Li), the height of the electrode (Hi), the offset from
the Z axis (Oi) and the tilt angle (Ai). There should be 16 parameters in a 4-stage collector.
However, the outer radius of the depressed collector was restricted to 60 mm, and the overall
length was restricted to be 150 mm. Thus 14 parameters were to be optimized. Before the
optimization, many simulations were carried out to find a proper range for each parameter to
ensure the searching range was as small as possible.

The full geometry of the 4-stage depressed collector is shown in Fig. 28. A gap of 10 mm
between the end of the collection region and the first stage of the collector was left to isolate



124 Numerical Simulations of Physical and Engineering Processes

Ai Li

Fig. 27. Geometry of an electrode.

40

W

r (mm)

B field (T)

z (mm)

Fig. 28. Full geometry of 4-stage depressed collector.

the high voltage between them. The electrode shapes were modified as shown in S1, S2, S3
and 54 to avoid potential distortion in the simulation when the electric field was applied to
the electrodes.
The potentials on each electrode were consistent with Table 6. After each simulation, the
average current collected by each collector was read from a MAGIC output data file. Then
the collected power was calculated from Eq. 12. The average power of the spent beam
was calculated by counting all the energy from the spent electrons. The collection efficiency
calculated by the collected power and power of the spent beam was used to evaluate
the optimum geometric parameters. The crossover probability, mutation probability, and
population size of the genetic algorithm were set to be 0.85, 0.05 and 12, respectively. The
evaluation function is

Heva = Meol — Wilpack (14)

where 1y, was the percentage of the backstreaming electrons, and W was the weight. In our
calculation, W was chosen as 1.5. The optimization was run with the magnetic field of 1.75 T.
After 756 iterations, an optimum collection efficiency of 78.7% was achieved. It was 3.8%
lower than the ideal collection efficiency calculated in the preceding section which assumed
all the spent electrons were sorted perfectly. That was because not all the electrons were
recovered by the optimum electrode and a small proportion were observed to backstream
in the simulation. The trajectories of the spent electrons are also shown in Fig. 28.

By applying the optimum depressed collector with collection efficiency of 78.7%, the overall
efficiency of the gyro-BWO was enhanced

B 0.150
ot = 170787 % (1 — 0.167)

x 100% = 43.6% (15)
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The overall efficiency was greatly improved by using the energy recovery system. The spent
electron beams for different magnetic fields were also simulated and the collection efficiencies
were about 78.0%-82.0% under their optimum potentials.

4.4 Simulation with secondary electron emission

The secondary electrons have several negative effects on high power microwave devices. First
of all, secondary electrons carrying velocities with opposite direction to the primaries will be
accelerated by the electrostatic field in the collection region and some of them will backstream.
The secondary electrons absorb energy from the electrostatic field and decrease the collection
efficiency. Secondly, the backstreaming electrons enter into the RF interaction region, which
will generate noise on the microwave output and decrease the performance of the microwave
tube. Thirdly, in high average power devices, the backstreaming may contribute an additional
thermal power on the thermally stressed waveguide structure (Ling et al., 2000). Thus in
depressed collectors, it is essential to reduce the current of secondary electrons to be as low as
possible.

Secondary electrons are generally divided into three classes, including the true secondary
electrons (TSEs), the rediffused electrons, and the backscattered elastic electrons (Furman &
Pivi, 2002). In our simulation, the rediffused electrons and the backscattered elastic electrons
were treated by a uniform model for they had the same physical nature. Generally, the term of
“backscattered electrons ”(BSEs) was used to indicate these two types of secondary electrons.
In MAGIC, the numbers, the energies and the angles of the emitted TSEs were sampled from
the probability function of the yield, the energy distribution and the angular distribution
by using a Monte Carlo algorithm. Therefore the true secondary yield (SEY), the emitted
angular distribution and the emitted-energy spectrum are considered as important quantities
in the simulation. Data about the SEY, the emitted angle distribution and the emitted-energy
spectrum can be obtained from experiments, and several semiempirical formulas have been
developed to fit the experimental data, such as Vaughan’s, Furman’s and Thomas’s equations
(Furman & Pivi, 2002; MAGIC, 2002; Vaughan, 1993).

The scattering process of the BSEs in MAGIC is carried out by ITS (The integrated TIGER
Series of Coupled Electron/Photon Monte Carlo Transport Codes) code and it has been
proved that the simulation results of the ITS code were in good agreement with the
experiments (Halbleib et al., 1992). The “BACKSCATTER”option in MAGIC allows ITS to
be invoked automatically to simulate the emission of both the rediffused and backscattered
elastic electrons. The TSE and BSE models used in the MAGIC simulations were discussed in
detail in ref. (Zhang et al., 2009b).

The optimization simulation was run once again with the secondary electrons considered.
Copper was chosen as the material of the electrodes. The collected power taking account of
the secondary electrons was revised as

N N N N
Peor = Y Vil + Y Y SIGN(n — ) Lj(V = V) = Y VuIgy
T oy " (16)
N[ =1Ln<g
SIGN(n—j) = {1,11 >

where N is the number of stages V}; , I, and are the potentials and the collected primary current
on the n'"-stage electrode, respectively. I, is the current of the secondary electrons emitted
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from the n'''-stage electrode and collected on the j-stage electrode. I, is the backstreaming
current by the secondary electrons emitted from the n'*-stage electrode.

In the previous optimum geometry without considering the secondary electrons, a collection
efficiency of 78.7% was obtained in the conditions of beam current of 1.5 A, beam voltage
of 40 kV, magnetic field of 1.75 T, and the operation frequency of 91.4 GHz. When taking
account of the secondary electron emission using Vaughan’s true secondary emission model,
the collection efficiency was reduced from 78.7% to 69.2% and the backstreaming increased
from 4.5% to 9.4%. The backstreaming was large thus modifications in the geometry were
required and the optimization process was carried out once again. After 552 iterations, an
optimum collection efficiency of 69.0% was achieved when using Vaughan's true secondary
emission model, whilst the backstreaming was reduced from 9.4% to 4.9%. Table 7 presents the
predicted collection efficiency and the percentage of the backstreaming current for a range of
secondary electron models. From the simulation results, by carefully designing the geometry
of the depressed collector, the backstreaming could be reduced to a relatively low level.

Cases True secondary |Collection| Percentage of

model efficiency |backstreaming
without TSEs, without BSEs - 75.7% 4.79%
Vaughan 71.1% 4.79%
with TSEs, without BSEs Furman 68.9% 4.80%
Thomas 73.0% 4.80%
without TSEs, with BSEs - 73.9% 4.89%
Vaughan 69.0% 4.89%
with TSEs, with BSEs Furman 66.8% 4.91%
Thomas 71.0% 4.90%

Table 7. The collection efficiency and the backstreaming rate in different cases.

From the simulation results, the backstreaming caused by the primary electrons was 4.79%,
while TSEs and BSEs only contributed about 0.1%. Between BSEs and TSEs, the backstreaming
was mostly composed by BSEs, as the BSEs had a higher energy than the TSEs thus they
were better able to overcome the radial electric field and return to the interaction region.
Fig. 29 shows the trajectories of the primary electrons, the true secondary electrons and the
backscattered electrons in the designed depressed collector when using Vaughan'’s formula.
The reduction of the collection efficiency caused by the three different models of true
secondary emission yield did not show a great difference and was about 4%. Each secondary
emission model generated a different number of the true secondary electrons and impacted
the second and third terms of Eq. 16. The second term was much smaller than the first term
since V; — V; was much smaller than V;. In the simulation, the potentials on each electrode
were -9.24 kV, -19.55 kV, -27.31 kV, -40.00 kV, respectively. From the trajectories of the true
secondary electrons in Fig. 29(b), most of the true secondary electrons emitted from the
forth, third and second electrodes were collected by the third, second, and first electrode,
respectively. That made the second term of Eq. 16 a small value. Since the difference between
the collection efficiency and backstreaming rate associated with the different true secondary
emission models were found to be small, in subsequent calculations, we only used Vaughan’s
formula because it has been widely accepted in the literature.

The output frequency of the W-band gyro-BWO can be tuned by adjusting the amplitude of
the cavity magnetic field. However the spent beam parameters were also affected by this
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Fig. 29. Trajectories of the electrons in the depressed collector (using Vaughan’s formulas).
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tuning. The collection efficiencies and the backstreaming rate of the W-band gyro-BWO were
therefore simulated in the whole frequency tuning range for the optimized configuration of
the four-stage depressed collector. The collection efficiencies achieved were simulated to be
about 70% and the backstreaming rate was lower than 7% in the working frequency band.

4.5 Heat power density distribution on the collector

To design an effective cooling system for the collector electrodes, the distribution of the heat
power dissipated on the surface of the electrodes needs to be evaluated. In MAGIC, there is
no way to obtain the heat power on the electrodes directly. However, it provides a command
“OBSERVE COLLECTED POWER”to monitor the overall heat dissipation on a conductor.
To obtain the heat power distribution on the surface of the electrodes, the four electrodes
were divided into a large number of small conductors both in the azimuthal direction and
the z direction and the heat power dissipated in each of these conductors was individually
recorded, thus an approximate heat power distribution was obtained. The greater the number
of conductors, the higher the resolution of the heat power distribution that could be achieved.
The heat power densities on the conductors could be calculated by dividing the heat power
by the area of the conductors’surface. In the simulation, the maximum heat density was
~240W /cm?. Tt is lower than the thermal stress threshold of the copper material thus the
generation of “hot spots”can be avoided.

5. Conclusion

In this chapter, the simulations and optimizations of a W-band gyro-BWO including the
simulation of a thermionic cusp electron gun which generates an annular, axis-encircling
electron beam, the simulation of the beam-wave interaction in the helically corrugated
interaction region and the simulation and optimization of an energy recovery system of a
4-stage depressed collector were presented.

The annular-shaped axis-encircling electron beam produced by the cusp electron gun had a
beam current of 1.5 A at an acceleration potential of 40 kV, an optimized axial velocity spread
Av; /v, of 8%, and arelative & spread Aa/a of 10% at an a value of 1.65. When driven by such
a beam the gyro-BWO was simulated to have a 3 dB frequency bandwidth of 84-104 GHz,
output power of 10 kW with an electronic efficiency of 17%. The optimization of the shape
and dimensions of each stage of the depressed collector using a genetic algorithm achieved an
overall recovery efficiency of about 70%, with a minimized back-streaming rate of 4.9%. With
the addition of a four stage depressed collector an overall efficiency of 40% was simulated for
the gyro-BWO.

6. References

Arnone, D. D., Ciesla, C. M., Corchia, A., Egusa, S., Pepper, M., Chamberlain, J. M., Bezant,
C., Linfield, E. H., Clothier, R. & Khammo, N. (1999). Applications of terahertz (THz)
technology to medical imaging, in J. M. Chamberlain (ed.), Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, Vol. 3828, pp. 209-219.

Bratman, V. L., Denisov, G. G., Samsonov, S. V, Cross, A. W., Phelps, A. D. R. & He, W. (2007).
High-efficiency wideband gyro-TWTs and gyro-BWOs with helically corrugated
waveguides, Radiophys. and Quantum Elect. 50: 95-107.



Numerical Simulation of a Gyro-BWO with
a Helically Corrugated Interaction Region, Cusp Electron gun and Depressed Collector 129

Bratman, V. L., Denisov, G. G., Manuilov, V. N., Samsonov, S. V. & Volkov, A. B. (2001).
Development of helical-waveguide gyro-devices based on low-energy electron
beams, Digest of Int. Conf. Infrared and Millimeter Waves, Toulouse, France pp. 5-105.

Bratman, V. L., Cross, A. W.,, Denisov, G. G., He, W.,, Phelps, A. D. R,, Ronald, K,
Samsonov, S. V., Whyte, C. G. & Young, A. R. (2000). High-gain wide-band gyrotron
traveling wave amplifier with a helically corrugated waveguide, Phys. Rev. Lett.
84(12): 2746-2749.

Burt, G., Samsonov, S. V., Phelps, A. D. R,, Bratman, V. L., Ronald, K., Denisov, G. G., He, W.,
Young, A., Cross, A. W. & Konoplev, I. V. (2005). Microwave pulse compression using
a helically corrugated waveguide, IEEE Trans. Plasma Sci. 33(2): 661-667.

Burt, G., Samsonov, S. V., Ronald, K., Denisov, G. G., Young, A. R., Bratman, V. L., Phelps,
A. D. R, Cross, A. W,, Konoplev, I. V., He, W,, Thomson, J. & Whyte, C. G.
(2004). Dispersion of helically corrugated waveguides: Analytical, numerical, and
experimental study, Phys. Rev. E 70(4): 046402.

Chen, E F. (1974). Introduction to Plasma Physics, Plenum Press, New York.

Chu, K. R. (1978). Theory of electron cyclotron maser interaction in a cavity at the harmonic
frequencies, Phys. Fluids 21(12): 2354-2364.

Cooke, S. J., Cross, A. W., He, W. & Phelps, A. D. R. (1996). Experimental operation of
a cyclotron autoresonance maser oscillator at the second harmonic, Phys. Rev. Lett.
77(23): 4836—4839.

Cross, A. W., He, W,, Phelps, A. D. R, Ronald, K., Whyte, C. G., Young, A. R., Robertson,
C. W,, Rafferty, E. G. & Thomson, J. (2007). Helically corrugated waveguide gyrotron
traveling wave amplifier using a thermonic cathode electron gun, Appl. Phys. Lett.
90: 253501.

Denisov, G. G., Bratman, V. L., Cross, A. W., He, W,, Phelps, A. D. R., Ronald, K., Samsonov,
S. V. & Whyte, C. G. (1998). Gyrotron traveling wave amplifier with a helical
interaction waveguide, Phys. Rev. Lett. 81(25): 5680-5683.

Denisov, G. G., Bratman, V. L., Phelps, A. D. R. & Samsonov, S. V. (1998). Gyro-TWT with a
helical operating waveguide: New possibilites to enhance efficiency and frequency
bandwidth, IEEE Trans. Plasma Sci. 26(3): 508-518.

Destler, W. W. & Rhee, M. ]. (1977). Radial and axial compression of a hollow electron beam
using an asymmetric magnetic cusp, Phys. Fluids 20(9): 1582-1584.

Donaldson, C. R., He, W., Cross, A. W., Li, F, Phelps, A. D. R, Zhang, L., Ronald, K.,
Robertson, C. W., Whyte, C. G. & Young, A. R. (2010). A cusp electron gun for
millimeter wave gyrodevices, Appl. Phys. Lett. 96(14): 141501.

Donaldson, C. R., He, W., Cross, A. W,, Phelps, A. D. R,, Li, E, Ronald, K., Robertson, C. W.,
Whyte, C. G., Young, A. R. & Zhang, L. (2009). Design and numerical optimization
of a cusp-gun-based electron beam for millimeter-wave gyro-devices, IEEE Trans.
Plasma Sci. 37(11): 2153-2157.

Furman, M. A. & Pivi, M. T. (2002). Probabilistic model for the simulation of secondary
electron emission, Phys. Rev. Spec. Top., Accel. Beams 5(12): 124404.

Gallagher, D. A., Barsanti, M., Scafuri, F. & Armstrong, C. (2000). High-power cusp gun for
harmonic gyro-device applications, IEEE Trans. Plasma Sci. 28(3): 695-699.

Ganguly, A. K. & Ahn, S. (1989). Non-linear analysis of the gyro-BWO in three dimensions,
Int. . Electronics 67(2): 261-276.



130 Numerical Simulations of Physical and Engineering Processes

Ghosh, T. K. & Carter, R. G. (2007). Optimization of multistage depressed collectors, IEEE
Trans. Electron Devices 54(8): 2031-2039.

Goplen, B., Ludeking, L., Smithe, D. & Warren, G. (1995). User-configurable MAGIC for
electromagnetic PIC calculations, Comput. Phys, Commun, 87: 54-86.

Halbleib, J. A., Kensek, R. P,, Valdez, G. D., Mehlhorn, T. A, Seltzer, S. M. & Berger, M. J. (1992).
ITS: The integrated TIGER series of electron/photon transport codes — Version 3.0,
IEEE Trans. Nucl. Sci. 39(4): 1025-1030.

He, W., Cooke, S.]., Cross, A. W. & Phelps, A. D. R. (2001). Simultaneous axial and rotational
electron beam velocity measurement using a phosphor scintillator, Rev. Sci. Inst.
72(5): 2268-2270.

He, W,, Ronald, K., Young, A. R, Cross, A. W., Phelps, A. D. R,, Whyte, C. G., Rafferty,
E. G., Thomson, J., Robertson, C. W., Speirs, D. C., Samsonov, S. V., Bratman, V. L. &
Denisov, G. G. (2005). Gyro-BWO experiments using a helical interaction waveguide,
IEEE Trans. Electron Devices 52(5): 839 — 844.

He, W., Whyte, C. G., Rafferty, E. G., Cross, A. W,, Phelps, A. D. R., Ronald, K., Young, A. R,,
Robertson, C. W., Speirs, D. C. & Rowlands, D. H. (2008). Axis-encircling electron
beam generation using a smooth magnetic cusp for gyrodevices, Appl. Phys. Lett.
93:121501.

He, W,, Donaldson, C. R., Li, F, Zhang, L., Cross, A. W., Phelps, A. D. R., Ronald, K.,
Robertson, C. W., Whyte, C. G. & Young, A. R. (2011). W-band gyro-devices using
helically corrugated waveguide and cusp gun: design, simulation and experiment,
TST 4(1): 9-19.

Idehara, T., Ogawa, 1., Mitsudo, S., Iwata, Y., Watanabe, S., Itakura, Y., Ohashi, K., Kobayashi,
H., Yokoyama, T., Zapevalov, V. E., Glyavin, M. Y., Kuftin, A. N., Malgin, O. V. &
Sabchevski, S. P. (2004). A high harmonic gyrotron with an axis-encircling electron
beam and a permanent magnet, IEEE Trans. Plasma Sci. 32(3): 903-909.

Imai, T., Kobayashi, N., Temkin, R., Thumm, M., Tran, M. Q. & Alikaev, V. (2001). Iter R & D:
Auxiliary systems: Electron cyclotron heating and current drive system, Fusion Eng.
Des. 55(2-3): 281 — 289.

Jeon, S. G, Baik, C. W,, Baik, D. H., Kim, D. H., Park, G. S., Sato, N. & Yokoo, K. (2002). Study
on velocity spread for axis-encircling electron beams generated by single magnetic
cusp, Appl. Phys. Lett. 80: 3703.

Kou, C. S, Chen, S. H, Barnett, L. R, Chen, H. Y. & Chu, K. R. (1993). Experimental study of
an injection-locked gyrotron backward-wave oscillator, Phys. Rev. Lett. 70(7): 924-927.

Li, F, He, W., Cross, A. W,, Donaldson, C. R., Zhang, L., Phelps, A. D. R. & Ronald, K. (2010).
Design and simulation of a ~390 GHz seventh harmonic gyrotron using a large orbit
electron beam, J. Phys. D: Appl. Phys. 43(15): 155204.

Ling, G., Piosczyk, B. & Thumm, M. (2000). A new approach for a multistage depressed
collector for gyrotrons, IEEE Trans. Plasma Sci. 28(3): 606—613.

Ludeking, L., Smithe, D. & Gray, T. (2003). Introduction to MAGIC, Mission Research
Corporation.

MAGIC (2002). MAGIC User’s Manual, Mission Research Corporation.

Manheimer, W. M., Mesyats, G. & Petelin, M. 1. (1994). Applications of High-power Microwaves,
Artech House.

McDermott, D. B., Balkcum, A. J. & Luhmann Jr., N. C. (1996). 35-GHz 25-kW CW low-voltage
third-harmonic gyrotron, IEEE Trans. Plasma Sci. 24(3): 613—-629.



Numerical Simulation of a Gyro-BWO with
a Helically Corrugated Interaction Region, Cusp Electron gun and Depressed Collector 131

McStravick, M., Samsonov, S. V., Ronald, K., Mishakin, S. V., He, W,, Denisov, G. G., Whyte,
C. G, Bratman, V. L., Cross, A. W., Young, A. R., Maclnnes, P, Robertson, C. W. &
Phelps, A. D. R. (2010). Experimental results on microwave pulse compression using
helically corrugated waveguide, J. Appl. Phys. 108(5): 054908-054908—4.

Neugebauer, W. & Mihran, T. G. (1972). A ten-stage electrostatic depressed collector for
improving klystron efficiency, IEEE Trans. Electron Devices 19(1): 111-121.

Nguyen, K. T., Smithe, D. N. & Ludeking, L. D. (1992). The double-cusp gyro-gun, IEDM Tech.
Dig. pp. 219-222.

Nusinovich, G. S. & Dumbrajs, O. (1996). Theory of gyro-backward wave oscillators
with tapered magnetic field and waveguide cross section, IEEE Trans. Plasma Sci.
24(3): 620-629.

Park, S. Y., Kyser, R. H., Armstrong, C. M., Parker, R. K. & Granatstein, V. L. (1990).
Experimental study of a Ka-band gyrotron backward-wave oscillator, IEEE Trans.
Plasma Sci. 18(3): 321 -325.

Pierce, J. R. (1954). Theory and Design of Electron Beams, Van Nostrand.

Rhee, M. J. & Destler, W. W. (1974). Relativistic electron dynamics in a cusped magnetic field,
Phys. Fluids 17(8): 1574-1581.

Samsonov, S. V., Phelps, A. D. R., Bratman, V. L., Burt, G., Denisov, G. G., Cross, A. W., Ronald,
K., He, W. & Yin, H. (2004). Compression of frequency-modulated pulses using
helically corrugated waveguides and its potential for generating multigigawatt rf
radiation, Phys. Rev. Lett. 92(11): 118301.

Scheitrum, G. P, Symons, R. S. & True, R. B. (1989). Low velocity spread axis-encircling
electron beams forming system, IEDM Tech. Dig. pp. 743-746.

Scheitrum, G. P. & True, R. (1981). A triple pole piece magnetic field reversal element for
generation of high rotational energy beam, IEDM Tech. Dig. 27: 332-335.

Schmidt, G. (1962). Nonadiabatic particle motion in axialsymmetric fields, Phys. Fluids
5(8): 994-1002.

Sinnis, J. & Schmidt, G. (1963). Experiment trajectory analysis of charged particles in a cusped
geometry, Phys. Fluids 6(6): 841-845.

Smirnova, T. I., Smirnov, A. 1., Clarkson, R. B. & Belford, R. L. (1995). W-Band (95 GHz)
EPR spectroscopy of nitroxide radicals with complex proton hyperfine structure: Fast
motion, J. Phys. Chem. 99(22): 9008-9016.

Sprangle, P. & Smith, R. A. (1980). The nonlinear theory of efficiency enhancement in the
electron cyclotron maser (gyrotron), J. Appl. Phys. 51(6): 3001-3007.

Sterzer, F. & Princeton, N. J. (1958). Improvement of traveling-wave tube efficiency through
collector potential depression, IRE Trans. Electron Devices 5(4): 300-305.

Vaughan, M. (1993). Secondary emission formulas, IEEE Trans. Electron Devices 40(4): 830.

Walter, M. T., Gilgenbach, R. M., Luginsland, J. W., Hochman, J. M., Rintamaki, J. I,
Jaynes, R. L., Lau, Y. Y. & Spencer, T. A. (1996). Effects of tapering on gyrotron
backward-wave oscillators, [EEE Trans. Plasma Sci. 24(3): 636—647.

Wang, Q. S., Huey, H. E., McDermott, D. B., Hirata, Y. & Luhmann Jr., N. C. (2000). Design
of a W-band second-harmonic TEy, gyro-TWT amplifier, IEEE Trans. Plasma Sci.
28(6): 2232-2237.

Wang, Q. S., McDermott, D. B., Chong, C. K., Kou, C. S., Chu, K. R. & C., L. J. N. (1994). Stable
1 MW, third-harmonic gyro-TWT amplifier, IEEE Trans. Plasma Sci. 22(5): 608-615.



132 Numerical Simulations of Physical and Engineering Processes

Wilson, J. D., Wintucky, E. G., Vaden, K. R, Force, D. A., Krainsky, I. L., Simons, R. N.,
Robbins, N. R., Menninger, W. L., Dibb, D. R. & Lewis, D. E. (2007). Advances in
space traveling-wave tubes for NASA missions, Proc. IEEE 95(10): 1958-1967.

Zhang, L., He, W., Cross, A. W, Phelps, A. D. R., Ronald, K. & Whyte, C. G. (2009a). Design
of an energy recovery system for a gyrotron backward-wave oscillator, IEEE Trans.
Plasma Sci. 37(3): 390-394.

Zhang, L., He, W., Cross, A. W., Phelps, A. D. R., Ronald, K. & Whyte, C. G. (2009b). Numerical
Optimization of a Multistage Depressed Collector With Secondary Electron Emission
for an X-band Gyro-BWO, IEEE Trans. Plasma Sci. 37(12): 2328 — 2334.



6

Numerical Simulations of
Nano-Scale Magnetization Dynamics

Paul Horley?, Vitor Vieira?, Jestis Gonzélez-Hernandez!,
Vitalii Dugaev?2? and Jozef Barnas*

ICentro de Investigacion en Materiales Avanzados, Chihuahua / Monterrey
2CFIF, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa
3Department of Physics, Rzeszow University of Technology, Rzeszow
4Department of Physics, Adam Mickiewicz University

IMeéxico

2Portugal

34Poland

1. Introduction

The discovery of the giant magnetoresistance (Baibich et al., 1988) attracted much scientific
interest to the magnetization dynamics at the nano-scale, which eventually led to the
formation of a new field - spintronics - aiming to join the conventional charge transfer
electronics with spin-related phenomena. The characteristics of spintronic devices (Zutic,
Fabian & Das, 2004) are very attractive, including extremely small size (nanometer scale),
fast response time and high operating frequencies (on the GHz domain), high sensitivity
and vast spectrum of possible applications ranging from magnetic memories (based on
magnetization reversal) to microwave generators (involving steady magnetization
precession) (Kiselev et al., 2003). The design of these devices, together with the resolution of
many problems required for full harvest of spin transport effects in traditional silicon-based
semiconductor electronics, is greatly aided by theoretical studies and numerical simulations.
For these, one should use adequate models describing magnetization dynamics at the
desired scale. If we go down to atomic level, the modelling from first-principles is
obligatory. Despite a huge progress in this field (and significant improvement of the
computational power of modern equipment), these calculations are far from being real-time
and can embrace only a limited amount of particles. Increasing the size of the computational
cell to several nanometers, it is possible to introduce the micromagnetic modelling
technique, for which every ferromagnetic particle is characterized by an average magnetic
moment M. These moments can interact with each other by short and long range forces due
to exchange coupling and dipole-dipole interactions. The evolution of the individual particle
is governed by the Landau-Lifshitz-Gilbert (LLG) equation - a semi-classical approximation
allowing to represent the time evolution of the magnetization vector M depending on
applied magnetic fields and spin-polarized currents passing through the particle.

Micromagnetics is a rapidly-developing field allowing tackling many serious problems
(Fidler & Schrefl, 2000; Berkov & Gorn, 2006). It is far simpler to implement in comparison
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with first principles calculations, so that modern computers can be efficiently used even for
3D micromagnetic simulations of large systems (Scholz et al., 2003; Vukadinovic & Boust,
2007). The amount of calculations required strongly depends on the space discretization of
the modelled object. For maximum accuracy, the volume of the magnetic body is divided
into a set of triangular prisms according to different tessellation algorithms. The system thus
becomes represented by a set of magnetization vectors M; corresponding to the nodes of the
resulting mesh. The evolution of the system can be obtained by solving the LLG equation
using finite element methods (Koehler & Fredkin, 1992; Szambolics et al., 2008), which may
involve re-structurization of the mesh to account for variation of the magnetization
distribution inside the sample. These calculations require considerable computational
resources and thus are usually performed on multi-processor computers or clusters thereof.
The calculations can be optimized for the case of regular meshes, with the simplest
numerical procedures available for cubic (3D) and square (2D) grids. In this case, the
cumbersome finite element methods can be substituted by simpler finite difference methods,
which benefit from pre-calculated coefficients for the derivatives required in the calculation
of near and far range interactions between the magnetic particles. The most time consuming
part of micromagnetic simulations concerns long-range interactions contributing to the
demagnetizing field. As this is formed by every particle belonging to the object, one should
calculate a complete convolution for every magnetic moment M;. In the case of uniform
grids, these calculations can be much simplified recalling that convolution in normal space
correspond to multiplication in the Fourier space. Thus, one has to Fast Fourier Transform
(FFT) the components of the demagnetizing field (Schabes & Aharoni, 1987) and M; for
every grid point, multiply them and inverse-FFT the result to obtain the demagnetizing
field. The other option is to use the fast multipole algorithm (Tan, Baras & Krishnaprasad,
2000), which can be also accelerated with the Fast Fourier Transform (Liu, Long, Ong & Li,
2006). The downside of uniform square grids is the complication to represent non-
rectangular objects. Even at small grid step the curves or lines that are not perpendicular to
the grid directions generate the staircase structure, which is artificial and has no counterpart
in the modelled ferromagnetic objects. This staircase acts as a nucleation source of
magnetization vortices, which may lead to incorrect simulation data suggesting vortex-
assisted magnetization dynamics (Garcia-Cervera, Gimbutas & Weinan, 2003) while the real
systems may display coherent magnetization rotation. To solve this issue (and to retain the
benefits of fast calculation of demagnetizing fields using FFT) one can introduce corrections
for the boundary cells (Parker, Cerjan & Hewett, 2000; Donahue & McMichael, 2007),
allowing to take into account the real shapes in place of its cubic or square cells.

However, the general methodology of solving the LLG equation can be discussed for
simpler models without the need to consider convolution, tessellation or grid discretization
errors for smooth contours. Actually, we can consider a single magnetic moment obeying
the LLG equation, which is the situation that can be found on a larger scale - thin magnetic
films with dimensions of dozens of nanometers. Stacking several ferromagnetic films
together and separating them by a non-magnetic spacer, one can obtain the simplest
spintronic device, a spin valve. The layers composing the valve serve different purposes and
because of this should have different thickness. The thicker layer is bulk enough to preclude
re-orientation of its magnetization vector by an applied magnetic field. To improve its
stability, it is usually linked with an anti-ferromagnetic interaction with yet another
substrate layer. The role of this fixed layer consists in aligning the magnetic moments of the
passing carriers, so that the current injected into the second, much thinner analyzer layer,
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will be spin-polarized. The analyzer layer, on the contrary, can be easily influenced by the
applied magnetic field, and it will manage to change its magnetization as a whole - thus
representing a macrospin (Xiao, Zangwill & Stiles, 2005). The experimental studies of spin
valves successfully confirmed the theoretical predictions made in the macrospin
approximation, including precessional and ballistic magnetization reversal, two types of
steady magnetization oscillations - in-plane and out-of-plane, as well as magnetization
relaxation to an intermediate canted state.

The detailed discussion of the magnetization dynamics is out of the scope of this chapter;
however, it is imperative to consider various representations of the main differential
equations governing the motion of the magnetization vector, as well as to discuss the
numerical methods for their appropriate solution. In particular, the modelling of the
temperature influence over the system, which is usually done adding a thermal noise term
to the effective field, leading to stochastic differential equations that require special
numerical methods to solve them.

2. Landau-Lifshitz-Gilbert equation

Let us consider a magnetic particle characterized by a magnetization vector M, and
subjected to the action of an effective magnetic field H and spin-polarized current J,
rendering magnetic torques on the system. The changes of magnetization with time are
governed by the Landau-Lifshitz-Gilbert equation:

M MxH+ L Mx (Mx))+- % Mmx ™M )
dt M M; dt

The first term in the right side of the equation corresponds to the Larmor precession around
the magnetic field direction, featuring a gyromagnetic ratio = 2.21x105> m/(As). The second
term, proposed by Slonczewski (1996), describes the spin torque rendered by the injected
current J. The third term was introduced by Gilbert (2004); it presents a phenomenological
description of magnetization damping, caused by dissipation of the macrospin energy due
to lattice vibrations, formation of spin waves and so on (Saradzhev et al., 2007). Thus, in the
absence of energy influx (provided by injected current), the system should relax to a stable
state. As the magnetic motion is effectively controlled by the interplay of driving and
damping forces, it is natural to suggest a model of viscous damping with a coefficient o
multiplied by the rate of change of the magnetization. On the other hand, it is unclear if a
constant damping coefficient is sufficient to reproduce accurately the magnetization
dynamics (Mills & Arias, 2006), which may require additional tweaking such as making o
dependent on the orientation of the magnetization vector (Tiberkevich & Slavin, 2007).
An essential feature of the LLG equation is that unconditionally preserves the length of the
magnetization vector, which corresponds to the saturation magnetization Ms of the material.
All possible magnetization dynamics is thus confined to the re-orientation of M, which can
be visualized as a phase trajectory formed by the motion of the tip of the magnetization
vector over the sphere with radius Ms. The effective magnetic field

H=Hgy; —(CppmMxex —CaniMzez) / Mg 2

is composed of applied external field Hexr, demagnetization field with a constant Cpeum
(valid for thin film approximation), and anisotropy field with coefficient Canr = 2K1/ toMs
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with easy axis anisotropy constant Kj. For the case of very thin ferromagnetic films the easy
magnetization axis will be located in the film plane, while the demagnetizing field will
penalize deviations of the magnetization from this plane. Therefore, in our case the
ferromagnetic film is set in the plane YZ, with an easy magnetization axis directed along the
axis Z. The injected spin-polarized current is scaled with #77 / 4eVK, , with spin polarization
degree 77 and volume of the analyzer layer V.

Taking a cross product of the LLG equation with dM/dt, re-arranging the terms, and
introducing the torque-inducing vectors A = H + «J and A = J - ¢ H, one can transform the
equation into the Landau explicit form, with the time derivative dM/dt on the r.h.s. only:

ld—M=—M><A+MLM><(M><A) 3)

n odt s

with a re-normalized gyromagnetic ratio 4 = / (1+a?). For the calculations illustrated in
this paper, we have used the common parameters for Co/Cu/Co spin valves (Kiselev et
al., 2003): analyzer layer with dimensions 91x50%6 nm3, Cans = 5000e, 47Ms = 10kOe, and
o = 0.014. The main dynamic modes that can be obtained from the LLG equation include
magnetization reversal between the stationary states Mz = + Ms, relaxation of the
magnetization to intermediate canted states, and steady magnetization precession. To
illustrate the ranges of variables H and ] for which these states take place, it is useful to
construct a dynamic diagram of the system (Fig. 1). The task can be simplified by
choosing the proper numerical characteristics allowing clear distinction between the
corresponding states. The situation with up/down and canted orientation of M is easily
resolved by monitoring the average value of the magnetization component along the easy
axis, <Mz>. In this way one can easily discover low-field and high-field magnetization
switching. The former occurs when the applied field overcomes the anisotropy constant
Canrt, which is marked with a thick horizontal line in Fig. 1. Below it, the magnetization
vector remains in the initial state pointing down. Above this line, the magnetization
points upwards (Fig. 1a). Under high fields and applied currents, it is also possible to
obtain magnetization pointing down (Fig. 1g). The transition between these two states
comes through slow magnetization reversal with phase trajectories practically covering
the entire sphere (Fig. 1h). Lowering the field, one can shift the stable point from the
stationary states Mz = + Ms, reaching a canted state (Fig. le-g). The variation of current
“opens” the canted state into a periodic trajectory (Fig. 1d). At this point, the observation
of <Mz> does not suffice to distinguish between oscillating and non-oscillating states,
because the average for a cyclic orbit gives a position of its centre, as if the system
converges to the canted state. The situation becomes more complicated for complex phase
portraits that contain several loops (Fig. 1b). To solve this problem, it is useful to calculate
the Hausdorff dimension (Lichtenberg & Lieberman, 1983):

Dy = —limloiN 4)
e-0 loge

where N is the number of cubes with side £required to cover the phase portrait. If we are

considering the stationary state, when the magnetization vector is fixed, the

corresponding phase portrait will be a point with Dy = 0. When the system performs

magnetization oscillations along a fixed trajectory, the Hausdorff dimension will be equal
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or above unity. The higher values of Dy will be achieved for higher number of loops,
and when these will eventually cover the whole sphere, the dimension should reach the
value of 2.
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Fig. 1. Dynamic diagram of macrospin system for different applied magnetic field and

injected spin-polarized current. The right panel shows the characteristic phase portraits with
grey oval corresponding to film plane YZ, and an arrow denoting averaged magnetization.

Magnetic field H, MA/m

Canted states

The macrospin model features two types of steady oscillations. In the simplest case, the
magnetization vector precesses around the canted axis, considerably deviating from the
film plane (Fig. 1c, d), hence the name - out-of-plane precession (OPP). For lower values
of injected current, the precession cycle splits into a butterfly-shaped curve (Fig. 1b),
symmetric regarding the film plane. Thus, despite magnetization vector deviates from the
film plane for certain periods, the average over the whole oscillation cycle will remain
parallel to the axis Z, so that this type of phase portrait is called in-plane precession (IPP).
The dynamic diagram shows how efficient is the use of the Hausdorff dimension for
visual separation of the parameter areas where in-plane and out-of-plane precession takes
place; it also works fine for complicated cases of multi-loop phase portraits triggered by
pulsed fields and currents (see Horley et al., 2008). Now, having the idea of what to expect
from the solution of the LLG equation, let us discuss in detail its different representations
(including strengths and weaknesses thereof from the computational point of view), as
well as numerical methods required for the most efficient and accurate solution of this
equation.

2.1 Cartesian projection
As we are studying the evolution of the magnetization in three-dimensional space, it is
straightforward to re-write the LLG for the Cartesian system as a set of ordinary

differential equations regarding the individual components of the magnetization vector
Mx, MY and M Z
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dM -

dtx =-1N1(MyAy —MzAy - MxE+ MgAy)
dM -

th =-Y1(MzAx - MyA; - MyE+ MgAy) ®)
dM —

dtZ =-11(MxAy —MyAy - M, E+MgAy)

with E=(M-A)/ M;. The Cartesian representation of the LLG is very easy to implement;
since it uses only basic arithmetic operations, ensuring very fast calculations. However, the
length of the magnetization vector is not unconditionally preserved in the straightforwardly
discretized version of these equations, so that even with a small integration step the system
will diverge after a few dozens of iterations. The common methodology to keep the length
of M constant consists in re-normalization of the magnetization after some (or each)
iteration. However, such an approach is often criticized: when the magnetization vector
goes out of the sphere with radius Ms, it becomes difficult to say if it is adequate to solve the
situation only by re-scaling of the vector without resorting to re-orientation of M.

o . . o . . dM
In fact, the condition M2 = M2 imposes a series of conditions starting with M- i 0 and

2 2
d—lz/[ = —[d—MJ . In the renormalization procedure one has
dt dt
aM
M(t)+——At
M(t+Af) = dt M+ a1 L My gy ar? (6)
1 dM,,, .2 dt 2 M- dt
P a0

so that the requirement of second order restriction is automatically implemented, fixing the
1d°M I : L ,
component EFAtZ along the direction of M(f) itself; however, it is not fixed completely,

as we will see in section 2.4. Thus, one will need reasonably small time steps (below pico-
second level) to replicate the experimental system behaviour with an acceptable precision.

2.2 Spherical projection

The constant length of the magnetization vector invites to use spherical coordinates,
describing the orientation of the magnetization vector with zenith and azimuth angles 8 and
@. The LLG equation in this projection has the following form:

49 _ 7[—Ax sing+ Ay cos@—cosf(Ay cos@+ Ay sing)+ A, sin ]

@ @)
sian—(f =—y[cos@(Ax cosp+ Ay sing)— A, sinf— Ay sing+ Ay cosg]

Despite the system is comprised only of two equations, it includes numerous trigonometric
functions. As one immediately sees, the quantities siné, sing, cosé and cosg enters several
times into the equations, calling for obvious optimization by calculating these quantities
only once per iteration. However, as we need to take into account magnetic anisotropy as
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well as demagnetizing field, the equations corresponding to (1) in the spherical coordinates
representation would be loaded with trigonometric functions, which require a considerable
calculation time. Additionally, one may want to obtain the projections of the magnetization
vector (e.g., for visualization of the phase portrait):

My = Mgsin@cos @
M, = Mgsin@sing 8)
My = Mg cos@

Such pronounced use of trigonometric functions slows down the calculation process
considerably. In comparison with the Cartesian coordinate representation (including re-
normalization of magnetization vector on every step), the numerical solution of the LLG in
the spherical representation is about six times slower (Horley et al., 2009).

2.3 Stereographic projection

Aiming to optimize the calculation time, one seeks to keep the LLG equation reduced to the
lower number of components and avoiding, if possible, the use of special functions. One
solution to this problem is the use of the stereographic projection mapping the sphere into a
plane with the complex variable ¢ = tan(% 0)e'® . The LLG equation has the following form in
the stereographic projection (Horley et al., 2009):

2
1+{°¢

The quantities marked with subscript “S.” correspond to spherical components of the vector

= 71[_(]5+ + igHS+) + (Z(H5+ - ig]5+)] (9)

H (and similarly J) in a rotated basis, defined by a rotation transforming ez into e, so that
Hg, =(H, -{*H_-2coH,)/(1+C¢). The variables H., H- and Hy represent the irreducible
spherical components of a Cartesian tensor (Normand & Raynal, 1982). If the magnetization
trajectory is limited only to the upper or to the lower hemisphere, the task of choosing the
proper projector pole is trivial. However, if we want to study the magnetization reversal
with the phase point passing from one pole to another, the corresponding equation written
for a single projection pole will cause numerical overflow. The situation can be solved by
dynamical switching of the projector pole. The variableg=+*1 denotes the projector pole
(lower or upper). It is important to mention that for ¢=1 the upper pole will correspond to
¢ = 0, while the lower (projector) pole will cause { — e . Switching the projector pole to
upper one (¢=-1), one should recalculate the projection variable as {'=1/(’, after which
the value {'= 0 will correspond to the lower, and { — e to the upper pole. Thus, for phase
portraits situated in the upper and lower hemisphere one will have two projections that
merge at the equatorial line. It is convenient to present both projections in different colours
(depending on the projection pole used) in the same plot, as it is illustrated in Figure 2 for
the case of IPP and OPP cycles. This approach simplifies the visualization of the phase
portraits, offering a useful “recipe” for obtaining a clear 2D plot of a 3D magnetization
curve. The superimposed plots may become complicated for phase portraits composed of
numerous loops, but this situation does not occur in a system subjected to constant fields
and currents (Horley et al., 2008).
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Fig. 2. Stereographic projection of in-plane (a) and out-of-plane (b) steady precession of a
macrospin. Red curves show the projection from the upper pole, blue curves correspond to
projection from the lower pole. The dotted grey circle represents the equator of the sphere

| M| = const, normalized over saturation magnetization Ms.

To improve the calculation performance for the LLG equation written in the stereographic
projection, it is important to optimize the procedure for projector pole switching. Our
previous studies have shown that it is not productive to switch the pole each time the
magnetization trajectory crosses the equator (Horley et al., 2009). A more useful approach
consists in the introduction of a certain threshold value | {|s, after crossing which the pole
switching should be performed. Our numerical tests shown that threshold values of
| {]s = 1000 (corresponding to the zenith angle 6 = 0.999367) boosts the calculation
performance, allowing to achieve five-time speed-up of the simulation comparing with the
spherical representation of the LLG equation. Increase of |{|s by five orders of magnitude
does not lead to any further improvement of calculation speed.

2.4 Frenet-Serret projection

Another representation of a curve in three-dimensional space can be made in the Frenet-
Serret reference frame consisting of tangent vector T, normal N and binormal B =T x N. The
equations governing the variation of these vectors for a curve parameterized by the arc
length s are the following

d—T:;(N, d—N:—;(T+TB, E:—TN (10)
ds ds ds

where yand 7 are the curvature and torsion of the curve, given by

aM _ d*M M d*°M ) &M
PR X - X [ —
dt = d? dt = ar | daf
Z = 73 =y = 2 (11)
‘LM M d*M
dt dr = dt?

They depend on higher order derivatives (second or second and third), putting more
demanding requirements on the precision of the numerical integration method used. It is
interesting to use these two scalars (y and 7) for characterization of the LLG solutions. Using
the above equations one can write the lowest terms in the time development of the
magnetization vector as
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2

M(t+At) = M(t)+dSTAt+[dzT ;((dsj ](At)2+--- (12)
d d dt

The tangent component of the second order correction vanishes if one uses the arc length

instead of time in the curve parameterization. Since the vectors T, N and B form a complete

basis, the vector M is, at each time, a linear combination of the vectors N and B. Using the

Frenet-Serret equations one finds that

M=--N+ZL B (13)
X it

where the prime denotes differentiation with respect to the arc length, together with the

’

condition (}ZJ . , which also follows from the constraint M2 = const. One sees that the
yaa X
2
second order condition M- d—M = [d;t/[

P j is automatically satisfied since the parallel

2

components of M and in the Frenet-Serret reference frame (i.e. along N) are inversely

dr

proportional. Alternatively, one can say that the renormalization of the magnetization
2

vector fixes the component of

> along M, but that it misses to fix the component along

the direction orthogonal to M and T.
The analytical expressions of the curvature and torsion in the absence of applied current are

AR AR+ (14)
SNV

N e a (15)

TR ds

Equations (14) and (15) use re-normalized gyromagnetic ratio 1 = 7/ (1+2), A=a}i and the
variable { given by the formula

=

{ylmH \/m( ‘;I:ﬂ (16)

Its derivative along the trajectory can be found as

a W{

|mxH|

ds |mxH|

2 dH d’H
t———=(m+{m,y) ——+ m T2
a2 ds ds

72 +2’2 (;m 71m2)
17)
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The quantities m, m; and m; entering equations (16) and (17) are defined as

M mxH mxH

m=—— ,,m =———, m=mxX——— (18)
|mxH| |mxH|

It is worth noting that formulas (14) and (15) are derived for the case when macrospin is

subjected only to an external magnetic field. This model can be easily extended to include

the Slonczewski torque term into the LLG equation by noticing that the spin-polarized

current torque in (1) can be formally incorporated into the precession term, which will result

in replacement of the applied field H by the effective field Hgrr:

M
Hppr :H—ﬁxl 19

s
In a similar manner, the equation (3) can be rewritten for the case of the injected spin-
polarized current with the same effective field replacement according to formula (19). This
methodology can be used to incorporate the Slonczewski torque into the formulas (14) and
(15) for torsion and curvature. Due to simplicity of this replacement, it was deemed
unnecessary to present the modified versions of formulas (14) and (15) here.

The Frenet-Serret frame allows analysis of the magnetization curve properties, shown in
Figs. 3 and 4 for in-plane and out-of-plane precession cases, respectively. To be able to carry
out the comparison, it was necessary to adequate the phase portraits that are characterized
by different precession frequencies. To do this, we separated a single precession cycle using
the following algorithm:

1. for each magnetization component 1, find the local minimum at time a;;

find the second local minimum at time b;;

find the estimated period as ¢; = b; - a;;

choose the variable with the largest ¢; and consider the portion of a phase portrait
formed by the data limited by time moments 4; and b;.

To visualize the values of velocity, curvature and torsion (VCT) directly on the phase
portrait, we faced the following difficulty. It is possible to code these quantities as colours,
but it may be quite complicated to interpret them as, for example, the torsion can be
positive or negative. Thus, it would be preferable to show the corresponding quantities as
vectors. As they give the local characteristics of the curve, it would be impractical to show
them as a tangent vector of varying length. On the contrary, plotting the corresponding
quantities along the normal or binormal would be more understandable. It resulted that
namely plotting VCT along the normal offered a more straightforward intuitive
interpretation. Thus, if the local torsion is positive, it would be plotted as a vector
pointing inside the curve; if the torsion is negative, the corresponding vector will point
outside of the curve. To visualize the smooth variation of VCT along the phase portrait, it
proved considerably useful to plot an enveloping curve for every calculated phase point,
introducing only several reference vectors denoting the behaviour of the local velocity,
curvature and torsion.

The resulting plots allow clear analysis and interpretation of the VCT parameters. The
largest rate of magnetization variation (velocity of the phase point) is observed at the upper
part of the “wings” of the butterfly-shaped phase portrait (Fig. 3a, point A). This is
understandable as the stationary solutions of the LLG include upper and lower poles of the

Ll N
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Fig. 3. Velocity, curvature and torsion of in-plane precession phase portrait calculated for a)
H=04MA/m,]=69mA; b) H=0.53 MA/m, ] = 64mA. The curve characteristics are
plotted as vectors directed along the normal to the curve, not to scale with the phase
portrait. The enveloping curve is shown as thin black line. The panels below presents the
distribution of normalized magnetization components m; = M;/ Ms (red - mx, green - my and
black - mz) as well as velocity, curvature and torsion (red, green and black, respectively).
The characteristic points are marked with letters: A) large velocity; B) large curvature; C)

large torsion and D) small velocity and torsion
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sphere and canted states, which are located outside of the easy magnetization plane. Thus,
passing along the upper part of the trajectory, the phase point travels through the area well
away from the stationary points, where the energy gradient is high, causing fast
reorientation of the magnetization. Upon approaching to the folding point, the phase point
travels closer to the stationary point, resulting in a much slower magnetization variation
(Fig. 3b, point D). As the two wings of the phase portrait join at the easy magnetization
plane, the curvature of the trajectory will increase significantly (Fig. 3a, point B), becoming
higher for smaller separation between the wings (Fig. 3b). At the peak of the curvature and
minimum velocity, the torsion changes sign, becoming negative after passing the point with
maximum curvature (Fig. 3a, point C). It is worth mentioning that, because the curvature of
the phase portrait is always positive, the period of the VCT curves constitutes a half of the
total period of in-plane precession oscillations. Thus, one cannot use VCT plots to
distinguish between the left and right “wings” of the magnetization curve.

In the case of out-of-plane precession cycle (Fig. 4), the behaviour of the VCT is similar,
because the phase point moves in the same energy landscape. When we consider the large
precession cycle (Fig. 4a) that corresponds to one of the wings of in-plane precession cycle,
one can observe increase of the magnetization precession velocity upon approaching the
upper part of the cycle. The lower part, while looking quite smooth, features increase of
curvature representing a “relic” of butterfly-shaped phase portrait corresponding to in-
plane precession. The small “splash” of torsion is also observable in this part of the phase
trajectory. However, if the phase portrait represents a cycle set well away from the easy
magnetization plane, the velocity of the phase point will be considerably uniform (Fig. 4b).
The curvature becomes constant and the torsion is vanishing, proving that this phase
portrait approaches to a circle lying in a plane, for which, as we know, the curvature is equal
to the inverse of the radius and the torsion is zero. Namely this type of oscillations, despite
of their modest amplitude, is most promising for microwave generator use, because the time
profiles of its magnetization components approach the harmonic signal (Fig. 4b).

3. Numerical methods

A proper choice of the numerical method for the solution of the LLG equation is very
important. The straightforward solution to obtain the most accurate results is to apply a
higher-order numerical scheme to the equations written in one of the coordinate systems
that ensures unconditional preservation of the magnetization vector length. However,
depending on the complexity of the system, this approach may require many hours of
computer time. The opposite approach consists in the choice of the simplest (first order)
numerical method applied to the fastest-to-calculate representation of LLG - the Cartesian
coordinates. In this way, the speed of simulations will increase up to an order of magnitude
- but alas, the results will be completely flawed even using reasonably small values of the
integration step h. Additional problems appear if we want to include the temperature into
the model - the resulting LLG equation is stochastic, and correct results can be achieved
only using numerical methods converging to the Stratonovich solution. All these details
should be taken into account in search of a balance between calculation speed and accuracy.
We will focus here on explicit numerical schemes, which are simpler for implementation as
they offer direct calculation of the next point using the current value of the function. Writing
the ordinary differential equation as

y'=fty®), (20)
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Fig. 4. Velocity, curvature and torsion of out-of-plane phase portrait calculated for a) H=0.2
MA/m, ] =87mA; b) H=0.18 MA/m, ] =136mA. Similarly to Fig. 3, the thin black curve
envelops the vectors corresponding to aforementioned characteristics of the phase portrait,
set along the normal to the curve. The time distribution of normalized magnetization m; =
M;/Ms (red - mx, green - my and black - mz) and velocity, curvature and torsion (red, green
and black, respectively) are given in the bottom panels.
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one can obtain the value of the derivative for the point f. Depending on the accuracy
required, this value can be used as is or improved introducing intermediate points.
Knowing the initial value of the function (Cauchy boundary condition), one can thus
obtain the next point and then iterate from there. For simplicity, we will consider here
single-step methods that require only information about a single point for the integration
of the system.

3.1 First order methods

The simplest integration formula, suggested by Leonhard Euler, straightforwardly uses
Eq. (20) to calculate the value of the function in the next point y,+1 basing on its current
value y,:

yn+1:yn+hf(tn'yn) (21)

This approach suffers from the fact that the value of the derivative in the point (y,, t)
does not hold for the whole integration step &, resulting in an error O(h). While it can be
acceptable for other systems, in the case of the LLG the situation is special due to the fact
that the first order methods are insufficient for accurate solution (see discussion after
equation (13)). Accumulation of these errors distorts the results, leading to significantly
different time evolution of the magnetization. This situation is illustrated in Fig. 5
showing solutions of the LLG calculated with the Euler method and 4t order Runge-
Kutta method.

As one can see from the figure, starting from the first peak (t ~ 115ps) the curve obtained
with the Euler method deviates; upon reaching the first minimum (¢ ~ 150ps) the difference
with the curve integrated with the Runge-Kutta method already becomes significant. It is
necessary to emphasize that the curves shown in Fig. 5 feature different amplitude and
frequencies - that is, the solution obtained with the Euler method is much distinct and
should be regarded as inadequate. Due to this accuracy issue, the first-order methods
should not be used at all for the numerical solution of the LLG equation.
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Fig. 5. Comparison of time evolution of normalized magnetization component m, = Mz/Ms:
red curve - integrated with Euler method; black curve - integrated with 4th order Runge-
Kutta method. Parameter values: applied magnetic field H = 60kA /m, injected spin-
polarized current | = 0.07A, integration step l = 0.5 ps.
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3.2 Higher order methods
The simplest way to improve the accuracy of the Euler method is to observe that

d]/ 1 Zdy 3
h +O0(h
1t 112 ()

— y0) + (e y(0) + 1h2[f+affj+0<h3)
Y

= y(t)+h[f(t,y(t))+;h[g];+g{;f]:|+0(h3)

=y(t)+hf [ t+Lhy(®)+1hf (1) |+ O(R)

A similar second order integrator is the “modified Euler method” or “Heun method”:

y(t+h)=y(t)+h—-

(22)

?n+1:yn+hf(tn’yn)’ yn+1:yn+%h(f(tn’yn)+f(tn+1’]?n+1)) (23)

which can be interpreted as an predictor-corrector method. It can be obtained formally
integrating the differential equation and using then the trapezoidal method to correct the
values of the derivative. Higher order integration methods are usually derived choosing a
specific form of the integrator with a certain number of points and some free weights which
are then chosen to obtain the desired accuracy.

In the framework of the generalization proposed by Carl Runge and Martin Kutta, the Heun
method can be classified as a second order Runge-Kutta method. It already has an
acceptable accuracy, at the same time featuring considerable calculation speed. The
precision of the integrator can be improved by using more intermediate points, leading to
the most commonly-used 4t order Runge-Kutta method with total accumulated error O(h4):

ky = f(ty Yu)

:f(t11+1h yn 1hk1)'

ks = f(t, + 30y, +30k), (24)
ky=f(t, +hy, +hks),

Yur1 = Yu +gh(k1 +2ky +2k; + ky)

To compare the performance of the different numerical methods and projections of the LLG,
we calculated a dynamical diagram of the system in H-] parameter space, using a 300x300
grid. For each pair of parameters, the LLG equation was integrated with the time step 0.5 ps,
reconstructing a phase portrait of the system containing 50,000 points. The initial 40,000
points were discarded to consider the steady motion of the magnetization vector without
any transitional effects. The Hausdorff dimension was calculated for resulting 10,000 points
using the same algorithm. The obtained dynamical diagrams are illustrated in Fig. 6.
Therefore, the difference in calculation times will be attributed only to the choice of the
numerical method used to solve the equation and the particular representation of the LLG.
The comparison of calculation times is given in the table.

As one can see from the table, the projection of the LLG equation has a pronounced
influence on the calculation times, leading to a seven-time speed gain for the Cartesian and a
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five-time speed gain for the stereographic projection in comparison with the LLG
calculations in spherical coordinates. Within the same projection type, the variation of the
calculation times is less impressive - the 1st order Euler method scores about 40-50%, and
the 2nd order Heun method - 60-80% relative to the 4th order Runge-Kutta method.

- Method Euler Heun 4th order Runge-Kutta
Projection
Cartesian 17m58s / (7%) | 23m57s / (10%) 31m43s / (13%)
. 1h40m38s / 2028m01s / o ,
Spherical (42%) (61%) 4h1m19s / (100%)
Stereographic 20m20s / (8%) | 26m52s / (11%) 46m08s / (19%)

Table 1. Calculation times for different integration methods and representations of LLG
equation. The numbers in parenthesis give the (rounded) percentage, assigning 100% to
spherical LLG calculated with 4th order Runge Kutta method (grey cell).

Let us analyze the dynamical diagrams presented in Fig. 6. At a first glance, the results
obtained by the Euler method are drastically different from those obtained with higher-
order methods. The IPP/OPP boundary is shifted to larger currents, but the difference does
not consist in mere scaling - the data obtained by the Euler method features distinct
oscillation modes (such as precession around the easy axis), which has no correspondence
for the case of Runge-Kutta or Heun integration. One may argue that such low accuracy is
caused by the fact that re-normalization of the magnetization vector M in the Cartesian
system is not enough, since it does not take into account second order changes of the
orientation of the magnetization vector. However, the very same situation takes place for the
dynamical diagrams calculated with the Euler method using the spherical and stereographic
projections, which reduce the number of degrees of freedom and automatically satisfy the
condition of constant length of the magnetization vector M.

Curiously, the distortion of the dynamic diagrams slightly improves (so that the division
line between IPP and OPP modes is shifted to lower currents) - perhaps, because the two-
dimensional projection somewhat “lowers” the accumulated calculation error. In any case,
the dynamic diagrams obtained with the Euler method are definitely wrong - for example,
LLG written in the stereographic projection displays three IPP/OPP boundaries in the
dynamic diagram, while the calculation made with a 2nd order method clearly show that
there should be only one such boundary.

Therefore, comparison of accuracy and performance suggests that the Heun method is the
most recommendable for fast and reliable solution of the LLG equation in different
representations. To improve precision one should use the 4th order Runge-Kutta method,
which, however, will mean at least doubled calculation times.

3.3 Stochastic case

The deterministic LLG equation, considered above, is applicable only for T=0K. At higher
temperatures, the system is affected by thermal fluctuations due to the interaction of the
magnetic moment with phonons, nuclear spins, etc. Due to this, the description of the
magnetization dynamics becomes probabilistic, and can be found by solving the Fokker-
Planck equation for the non-equilibrium distribution of the probability P(M, t). This
approach is very useful to magnetization reversal studies, allowing obtaining the probability
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Fig. 6. Dynamic diagrams (based on the Hausdorff dimension Dy) calculated using 1st order
Euler, 2nd order Heun and 4th order Runge-Kutta methods in Cartesian, spherical and
stereographic projections. Integration step for all cases is 0.5 ps.

of switching under a given applied magnetic field, injected spin-polarized current and finite
temperature, which is undoubtedly important for the development of magnetic memory
devices. At the same time, for studies of magnetization precession it is desirable to have
access to the time evolution of the magnetization vector, studying the phase portraits of the
system as was done in the deterministic LLG case (Garcia-Palacios & Lazaro 1998, Sukhov &
Berakdar 2008). To do this, one should introduce the noise term to the effective field:

H, = |20y (25)
Nt VMsAt

Here k is Boltzmann constant, T is temperature, V is the volume of magnetic particle and At
is integration step for the time (referred above as ). The quantity IV, is the random variable
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corresponding to a Wiener process with zero mean value and constant standard deviation.
The noise term transforms the LLG into a stochastic differential equation (SDE)

ld—M=—M><(H+Ht+04])+LM><(M><(]—05(H+Ht)) (26)
n dt Mg

As one can see, the current-induced torque does not contribute to the noise term, while the

field-induced torque does. As vector products are distributive over addition, one can
separate deterministic and noise parts of the equation

1 —M><A+LM><(M><A) - M><Ht+iM><(M><aHt) (27)
n dt Ms Ms

Here torque-inducing vectors A and A are the same as those introduced for equation (3). The
general form of such a SDE can be written as a sum of a drift (deterministic) and diffusion
(noise) terms f(y) and g(v), respectively

dy = f(y)dt + g(y)aW; . (28)

This is a Langevin equation with multiplicative noise, because the noise term g depends on
the phase variable y = M. To find the increment of the function during a finite time step dt
the equation (28) should be integrated

t+dt t+dt

dy= [ fy(),)d + [ g(y(t')¥)dW,dr . (29)

The deterministic integral is easy to find as the function f(t) is a regular function. The
situation with the stochastic term is radically different, because the function g(y) includes a
Wiener process that is non-differentiable. In the simplest case, one can estimate the value of
the integral by evaluating g(y) at the beginning of a small dt interval, assume it constant, and
thus obtain the integral as multiplication Wid#/2, because dW; is proportional to the square
root of the integration time step dt. Under these assumptions, one will obtain the It6
interpretation of the stochastic differential equation:

dy(t) = f(y(D), Dt + g(y(1), YW, . (30)

The other option is to evaluate the diffusion term at an intermediate point belonging to the
time interval [t, t + dt] that would give rise to an additional drift term. If one chooses the
intermediate point to be the midpoint of the aforementioned interval which, from the
discussion of eq. (22) gives a second order algorithm, the stochastic equation can be
rewritten as:

dy())=[ f(y(), D)+ (1), D3 (), 1) |dt + gy (1), HW,at . (31)

with the partial derivative g¢'(y)=0g(y,t)/dy. The latter formula corresponds to the
Stratonovich interpretation of the SDE, where the usual chain rule of integration remains
valid. As equations (30) and (31) are different, they will naturally lead to distinct solutions.
One should then use the drift term appropriate to the interpretation being used (the Fokker-
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Planck equation for the probability distribution is the same in both interpretations). The It6
interpretation is widely used for mathematical problems and for financial applications, in
particular. It has the advantage that only requires information about past events. The
Stratonovich interpretation is appropriate for physical and engineering systems (Kloeden &
Platen, 1999), where Langevin equations are derived from microscopic models by a coarse-
graining process. Therefore, to simulate magnetization dynamics governed by a stochastic
LLG equation, one need to ensure that: 1) the appropriate method for the solution of the
deterministic part of the LLG (i.e. at least a second-order numerical method) will be used; 2)
this method will converge to the Stratonovich solution of the SDE; 3) the integration will be
performed with a proper integration step so that dt ~ dA2, requiring a smaller step for the
case of higher temperatures; and 4) the random numbers used to generate the noise term of
the stochastic equation will meet the requirements of a Wiener process.

The straightforward re-mapping of the Euler method to the stochastic case is known as the
Euler-Maruyama method (Mahony, 2006):

yn+1zyn+Atf(yn)+Aan(yn)' (32)

Similarly to the case of ODE, this method is easy to implement, but it gives unreliable results
if the drift and diffusion terms vary significantly (which includes the case of magnetization
dynamics simulations). The stochastic Euler method converges to the It6 solution (Kloeden
& Platen 1999). To obtain the Stratonovich solution, one may introduce the additional drift
term into the first-order numerical scheme, leading to the Milstein method (Mahony, 2006):

Yur1 = Yn +Atf(yn)+AV\/ng(yn) +%g(yn)g,(yn)(A5\/n _At) (33)

This approach allows to increase the convergence order to unity, which is still insufficient
for the LLG SDE. As we have shown before, the numerical method should be at least of the
second order to allow proper treatment of the deterministic LLG. Therefore, the basic choice
also points to the stochastic Heun method (Burrage, Burrage & Tian, 2004):

?n =Y +Atf(yn)+AWg(yn) Y1 = VYn +%At(f(yn)+f(?n))+%AWn(g(yn)+g(gn)) (34)

It converges to the Stratonovich solution and is convenient for implementation as no
additional drift term is necessary. Further precision improvement can be achieved by use of
stochastic Runge-Kutta methods, such as second-order method (Mahony, 2006):

gn =Yn +%Atf(yn)+%Aan(yn)

Yui1 = Yn +At(%f(yn)+%f(gn))+AWn(%g(yn)+%g(gn)) (35)

The Runge-Kutta methods also converge to the Stratonovich solution and do not require
insertion of any additional drift terms.

The next important question is to ensure the proper characteristics of the noise. The basic
generators of random numbers available in BASIC, FORTRAN, C or Pascal actually
represent pseudo-random numbers, which repeat after a certain large number of steps. For
the solution of stochastic differential equations, we should generate random numbers
corresponding to a Wiener process, i.e., characterized by zero mean and constant dispersion.
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One of the useful approaches is the Ziggurat method proposed by Marsaglia and Tsang
(2000). It consists in binning of the area below the desired distribution curves with
rectangles of the same area, the lowest of which tails to the infinity. Upon generation of an
integer random number, its rightmost bits are counted as an index to the bin. If the random
number fits below the distribution curve, it is used as an outcome of the algorithm; in the
opposite case, the number becomes transformed until this condition is satisfied. By storing
several arrays of coefficients describing the binning applied, it is possible to achieve fast
generation of random numbers obeying the required decreasing distribution. Comparison of
the Ziggurat method with other fast generators of random numbers show a considerable
performance gain, requiring three-times less time than Ahrens-Dieter and 5.5 times - than
Leva method (Marsaglia & Tsang, 2000).

For a three-dimensional system, one should use a 3D Wiener process for the thermal field.
This means that we should create three independent sets of random numbers modifying the
effective field components Hx, Hy and Hz. However, for practical application it is compu-
tation-costly to re-generate a whole set of random numbers if one is going to calculate the
dynamic diagrams composed of dozens of thousands of points; additionally, as thermal
fluctuations should be taken into account from a probabilistic point of view, it will be
necessary to average over several different realizations of the stochastic process to obtain the
required statistical data about the system. We suggest to improve this situation by pre-
generating several sets of Wiener processes (which can be saved into a file for further use),
and then to generate three non-repeating random numbers to pick independent stochastic
“channels”. This approach allows P(n,k) = n!/(n - k)! permutations for channel number n
grouped in k = 3 subsets. In our studies, n=20 pre-calculated channels were used, giving
6840 possible types of 3D Wiener processes. Increasing the number of pre-calculated
channels to 50, one easily obtains over 105 possible combinations.
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Fig. 7. The dynamic diagram of macrospin reversal with temperature. The plot is averaged
over 20 realizations of Wiener process. The characteristic phase portraits are shown.
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To illustrate the influence of the temperature on the macrospin dynamics, we present in Fig.
7 the dynamical diagram, averaged over 20 realizations of the stochastic process, for a
macrospin in the parameter space (H, T). Here we focus on magnetization reversal,
observing the change of normalized magnetization component mz; = Mz / Ms allowing
clear distinction between up / down magnetization states. As it is natural to expect, for the
low temperatures (T < 10K) the border between mz = *1 states is very sharp. The transition
occurs upon application of magnetic field overcoming easy axis anisotropy, which is
responsible for “holding” the magnetization in its stationary state. With increase of the
temperature, the thermal fluctuations intensify and help the macrospin to overcome the
potential barrier. At a certain temperature the fluctuations are so strong that the potential
barrier created with the easy axis anisotropy is insufficient to separate the states with
myz = £1. Above this temperature the system becomes paramagnetic.

The overall qualitative behaviour of the system as illustrated in Fig. 7 is physically sound;
however, a quantitative picture is far from perfect. One would expect the transition
temperature to correspond to the Curie temperature, which for the model material (Co) is
1404K; the simulation plot shows that the loss of ferromagnetism occurs for temperatures
about one order of magnitude higher. These unrealistic temperatures are a known problem
with macrospin simulations (Xiao, Zangwill, & Stiles, 2005). They can be partially explained
by the fixed length of the magnetization vector, while in real-life ferromagnetics the
saturation magnetization decreases for increasing temperature. Therefore, the macrospin
model is unrealistically “tough” to repolarise in the high-temperature mode, yielding an
unrealistic Curie temperature. Indeed, if the magnetization vector is allowed to change its
length - the approach used in the Landau-Lifshitz-Bloch equation - the simulation of the
magnetization dynamics becomes more realistic at high temperatures (Chubykalo-Fesenko
et al., 2006).

4. Conclusion

We analyzed different representations (spherical, Cartesian, stereographic and Frenet-
Serret) of the Landau-Lifshitz-Gilbert equation describing magnetization dynamics. The
fastest calculations are achieved for the equation written in Cartesian coordinates, which,
however, requires re-normalization of the magnetization vector at every integration step.
The use of spherical coordinates, despite being the straightforward approach for the system
with constant M, is laden with trigonometric functions and requires larger calculation times.
The choice of the numerical method is also an important point for the simulations of
magnetization dynamics. It was shown that the LLG requires at least a second-order
numerical scheme to obtain the correct solution. Analysis of calculation performance
suggests that the Heun method is a reasonable choice in terms of producing adequate
results under acceptable calculation times.

For the case of finite-temperature modelling, the LLG becomes a stochastic equation with
multiplicative noise, which makes it important to select the proper interpretation of the
stochastic differential equation. Since this is a physical problem, it is usually more natural
and favourable to consider the physical system in the framework of the Stratonovich
interpretation, where the usual chain rule is still valid. The set of numerical methods
suitable for its solution is then narrowed down. On the other hand, since it is possible to
convert the SDE to the Ito interpretation, it is also possible to use the It6 integration as well,
as we are dealing with the white thermal noise. Aiming to use minimally second-order
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method for the deterministic LLG equation, we return to the suggestion that the Heun’s
scheme offers a reasonable accuracy. At the same time, the imposition of constant length of
the magnetization vector (as it appears in the LLG) makes the system unrealistically stable at
high temperatures, which results in a non-physical value of the Curie temperature. In order
to achieve more realistic results, it is necessary to allow the variation of the magnetization
vector length, which can be realized, for example, in the Landau-Lifshitz-Bloch equation.
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1. Introduction

Atmospheric optical communication has been receiving considerable attention recently for
use in high data rate wireless links (Juarez et al., 2006; Zhu & Kahn, 2002). Considering
their narrow beamwidths and lack of licensing requirements as compared to microwave
systems, atmospheric optical systems are appropriate candidates for secure, high data rate,
cost-effective, wide bandwidth communications. Furthermore, atmospheric free space optical
(FSO) communications are less susceptible to the radio interference than radio-wireless
communications. Thus, FSO communication systems represent a promising alternative to
solve the last mile problem, above all in densely populated urban areas. Then, applications
that could benefit from optical communication systems are those that have platforms with
limited weight and space, require very high data links and must operate in an environment
where fiber optic links are not practical. Also, there has been a lot of interest over the years in
the possibility of using optical transmitters for satellite communications (Nugent et al., 2009).
This chapter is focused on how to model the propagation of laser beams through the
atmosphere. In particular, it is concerned with line-of-sight propagation problems, i.e., the
receiver is in full view of the transmitter. This concern is referred to situations where if
there were no atmosphere and the waves were propagating in a vacuum, then the level
of irradiance that a receiver would observe from the transmitter would be constant in
time, with a value determined by the transmitter geometry plus vacuum diffraction effects.
Nevertheless, propagation through the turbulent atmosphere involves situations where a
laser beam is propagating through the clear atmosphere but where very small changes in the
refractive index are present too. These small changes in refractive index, which are typically
on the order of 107, are related primarily to the small variations in temperature (on the
order of 0.1-1°C), which are produced by the turbulent motion of the atmosphere. Clearly,
fluctuations in pressure of the atmosphere also induces in refractive index irregularities.
Thus, the introduction of the atmosphere between source and receiver, and its inherent
random refractive index variations, can lead to power losses at the receiver and eventually it
produces spatial and temporal fluctuations in the received irradiance, i.e. turbulence-induced
signal power fading (Andrews & Phillips, 1998); but this random variations in atmospheric
refractive index along the optical path also produces fluctuations in other wave parameters
such as phase, angle of arrival and frequency. Such fluctuations can produce an increase in the



158 Numerical Simulations of Physical and Engineering Processes

link error probability limiting the performance of communication systems. In this particular
scenario, the turbulence-induced fading is called scintillation.

The goal of this chapter is to present an efficient computer simulation technique to derive these
irradiance fluctuations for a propagating optical wave in a weakly inhomogeneous medium
under the assumption that small-scale fluctuations are modulated by large-scale irradiance
fluctuations of the wave.

2. Turbulence cascade theory

Temperature, pressure and humidity fluctuations, which are close related to wind velocity
fluctuations, are primarily the cause of refractive index fluctuations transported by the
turbulent motion of the atmosphere. In fact, all these effects let the formation of unstable air
masses that, eventually, can be decomposed into turbulent eddies of different sizes, initiating
the turbulent process. This atmospheric turbulent process can be physically described by
Kolmogorov cascade theory (Andrews & Phillips, 1998; Brookner, 1970; Frisch, 1995; Tatarskii,
1971). Thus, turbulent air motion represents a set of eddies of various scales sizes. Large
eddies become unstable due to very high Reynolds number and break apart (Frisch, 1995), so
their energy is redistributed without loss to eddies of decreasing size until the kinetic energy
of the flow is finally dissipated into heat by viscosity. The scale sizes of these eddies extend
from a largest scale size Ly to a smallest scale size ly. Briefly, the largest scale size, Ly, is
smaller than those at which turbulent energy is injected into a region. It defines an effective
outer scale of turbulence which near the ground is roughly comparable with the height of the
observation point above ground. On the contrary, the smallest scale size, [y, denotes the inner
scale of turbulence, the scale where the Reynolds number approaches unity and the energy is
dissipated into heat. It is assumed that each eddy is homogeneous, although with a different
index of refraction. These atmospheric index-of-refraction variations produce fluctuations in
the irradiance of the transmitted optical beam, what is known as atmospheric scintillation.

It is widely accepted two further assumptions: the assumption of local homogeneity and the
assumption of local isotropy. The first of them, the local homogeneity assumption, implies
that the velocity difference statistics depend only on the displacement vector, r. Hence, we
may write the random variation of the refractive index as (Clifford & Strohbehn, 1970):

n(r) = ng+ nq(r), )

where r is the displacement vector, 1y =2 1 is the ensemble average of n (its free space value),
whereas 11(r) < 1 is a measure of the fluctuation of the refractive index from its free space
value.

The second assumption is the supposition of local isotropy, which implies that only the
magnitude of r is important. On the other hand, for locally homogeneous and isotropic
turbulence, a method of analysis involving structure functions is successful in meeting such
problem (Strohbehn, 1968). Hence, we can define the structure function for the refractive
index fluctuations, Dy (r), as:

Dy (r) = E[(n(t1) — n(r1 +1))°] = 2[Ba(0) — Ba(r)], @)

where E[-] is the ensemble average operator, B, (r) is the covariance function of the refractive
index and r = |r|. By applying the Fourier transform to B, (r), we can obtain the spatial power
spectrum of refractive index, @, («). Then, we consider now that the outer scale, Ly, and the
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inner scale, Iy, of turbulence satisfy the following conditions (Tatarskii, 1971) :

Lo> +/(AL), and [y < +/(AL), [m], 3)
where A is the optical wavelength in meters and L is the transmission range, also expressed in
meters. Hence, the result is the easiest of the expressions to describe @, (), given by

1 1
@, (k) = 0.033C2x 1173, L €r< )

g/
that it is usually named as Kolmogorov spectrum (Andrews & Phillips, 1998). This power
spectrum of refractive index represents the energy distribution of turbulent eddies
transported by the turbulent motion. In the last expression, « is the spatial wave number
and C? is the refractive-index structure parameter, which is altitude-dependent.

3. Wave propagation in random media

There is an extensive literature on the subject of the theory of line-of-sight propagation
through the atmosphere (Andrews & Phillips, 1998; Andrews etal.,, 2000; Fante, 1975;
Ishimaru, 1997; Strohbehn, 1978; Tatarskii, 1971). One of the most important works was
developed by Tatarskii (Tatarskii, 1971). He supposed a plane wave that is incident upon the
random medium (the atmosphere in this particular case). It is assumed that the atmosphere
has zero conductivity and unit magnetic permeability and that the electromagnetic field has a
sinusoidal time dependence (a monochromatic wave). Under these circumstances, Maxwell’s
equations take the form:

V-H=0, ®)
V x E = jkH, (6)
V x H = —jkn’E, @)
V- (n*E) =0; 8

where j = /—1, k = 27t/ A is the wave number of the electromagnetic wave with A being the
optical wavelength; whereas 1(r) is the atmospheric index of refraction whose time variations
have been suppressed and being a random function of position, r. The V operator is the
well-known vector derivative (0/9dx,d/0dy,9/0z). The quantities E and H are the vector
amplitudes of the electric and magnetic fields and are a function of position alone. The
assumed sinusoidal time dependence is contained in the wave number, k.
Thus, if we take the curl of Eq. (6) and, after substituting Eq. (7), then the following expression
is obtained:

—V?E+V(V -E) = K’n’E, )
where the V2 operator is the Laplacian (92 /9x% + 9% /9y* + 9%/9z2).

Equation (8) is expanded and solved for V - E, and the result inserted into Eq. (9) so that we
can obtain the final form of the vector wave equation:

V2E + K*n?(r)E+2V (E- Vlogn(r)) =0, (10)

where r = (x,y,z) denotes a point in space. In Eq. (10) we have substituted the gradient
of the natural logarithm for Vn/n. Equation (10) can be simplified by imposing certain
characteristics of the propagation wave. In particular, since the wavelength A for optical
radiation is much smaller than the smallest scale of turbulence, [y, (Strohbehn, 1968) the
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maximum scattering angle is roughly A/l ~ 1074 rad. Asa consequence, the last term on
the left-hand side of Eq. (10) is negligible. Such a term is related to the change in polarization
of the wave as it propagates (Strohbehn, 1971; Strohbehn & Clifford, 1967). This conclusion
permit us to drop the last term, and Eq. (10) then simplifies to

VZE + kK*n?(r)E = 0. (11)

Because Eq. (11) is easily decomposed into three scalar equations, one for each component
of the electric field, E, we may solve one scalar equation and ignore the vector character of
the wave until the final solution. Therefore if we let U(r) denote one of the scalar components
that is transverse to the direction of propagation along the positive x-axis (Andrews & Phillips,
1998), then Eq. (11) may be replaced by the scalar stochastic differential equation

V2U 4 K n?(r)U = 0. (12)

The index of refraction, n(r) = mng + ni(r), fluctuates about the average value
np = E[n(r)] = 1, whereas n1(r) < 1 is the fluctuation of the refractive index from its free
space value. Thus

V2U 4 K (ng + nq(r))?U = 0. (13)

For weak fluctuation, it is necessary to obtain an approximate solution of Eq. (13) for small
n1. This can be done in two ways: one is to expand U in a series:

U=Uy+U +Uy+.., (14)
and the other is to expand the exponent of U in a series:

U=-exp o+ P1+P2+..) =exp(¥). (15)

In Eq. (14), Uy is the unperturbed portion of the field in the absence of turbulence and the
remaining terms represent first-order, second-order, etc., perturbations caused by the presence
of random inhomogeneities. It is generally assumed that |Uy (r)| < |U;(r)| < |Up(r)|. In this
sense, in Eq. (15), ¢, i, are the first-order and second-order complex phase perturbations,
respectively, whereas i is the phase of the optical wave in free space.

The expansion of Eq. (14) is the Born approximation, and has the important inconvenient that
the complex Gaussian model for the field as predicted by this model does not compare well
with experimental data. The other expansion given by Eq. (15) is called the Rytov solution.
This technique is widely used in line-of-sight propagation problems because it simplifies the
procedure of obtaining both amplitude and phase fluctuations and because its exponential
representation is thought to represent a propagation wave better than the algebraic series
representation of the Born method. From the Rytov solution, the wave equation becomes:

V2 + (Vp)? + K2 (ng + n1(r))*> = 0. (16)

This is a nonlinear first order differential equation for V¢ and is known as the Riccati equation.
Consider now a first order perturbation, then

$(L,x) = ¢o(L, 1) + ¢1(L,1); (17a)
n(r) = ng + ny(r); ng = 1. (17b)



A Computationally Efficient Numerical Simulation
for Generating Atmospheric Optical Scintillations 161

Operating, assuming that |Vp;| < | V|, due to n1(r) < 1, neglecting n3(r) in comparison
to 2n1(r), and equating the terms with the same order of perturbation, then the following
expressions are obtained:

V2o + (Vo) + K nj(r) = 0; (18a)

V21 + 2V Vi + 2k (r) = 0. (18b)

The first one is the differential equation for Vi in the absence of the fluctuation whereas
turbulent atmosphere induced perturbation are found in the second expression. The
resolution of Eq. (18) is detailed in (Fante, 1975; Ishimaru, 1997). For the particular case of
a monochromatic optical plane wave propagating along the positive x-axis, i.e., Up(L,r) =
exp (jkx), this solution can be written as:

2 k W L — /
l/Jl(L,l') _ %///‘/nl(r/)exp(] HI’ I" /|‘ X |])d3r/’ (19)

|r—r

where the position (L, r) denotes a position in the receiver plane (at x = L) whereas (x/,1’)
represents any position at an arbitrary plane along the propagation path. The mathematical
development needed to solve Eq. (19) can be consulted in (Andrews & Phillips, 1998;
Ishimaru, 1997). Furthermore, the statistical nature of 1 (L, r) can be deduced in an easy way.
Equation (19) has the physical interpretation that the first-order Rytov perturbation, ¢ (L, r) is
a sum of spherical waves generated at various points t’ throughout the scattering volume V,
the strength of each sum wave being proportional to the product of the unperturbed field term
Uy and the refractive-index perturbation, 1y, at the point r’ (Andrews & Phillips, 1998). Thus it
is possible to apply the central limit theorem. According to such a theorem, the distribution of
a random variable which is a sum of N independent random variables approaches normal as
N — oo regardless of the distribution of each random variable. Application of the central limit
theorem to this integral equation leads to the prediction of a normal probability distribution
for ¢. Since we can substitute ¥ = x + jS, where x and S are called the log-amplitude and
phase, respectively, of the field, then application of the central limit theorem also leads to the
prediction of a Gaussian (normal) probability distribution for both ) and S, at least up to first
order corrections (x1 and Sq).

Accordingly, under this first-order Rytov approximation, the field of a propagating optical
wave at distance L from the source is represented by:

U = exp () = Uo(L, ) exp (91). (20)
Hence, the irradiance of the random field shown in Eq. (20) takes the form:
I'=|Uo(L, )P exp (91 + ¢) = lpexp (2x1), [t/ m?] (21)
where, from now onwards, we denote x; as ) for simplicity in the notation. Hence,
I=Ipexp (2x), [w/m?]. (22)

In Eq. (21), operator * denotes the complex conjugate, |Up| is the amplitude of the unperturbed
field and I is the level of irradiance fluctuation in the absence of air turbulence that ensures
that the fading does not attenuate or amplify the average power, i.e., E[I] = |Up|?. This may be
thought of as a conservation of energy consideration and requires the choice of E[x] = —(7)%,
as was explained in (Fried, 1967; Strohbehn, 1978), where E[x] is the ensemble average of
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log-amplitude, whereas (772( is its variance depending on the structure parameter, C2. With all
of these expressions, we have modeled the irradiance of the random field, I, in the space at a
single instant in time. Now, because the state of the atmospheric turbulence varies with time,
the intensity fluctuations will also be temporally correlated. Then, Eq. (22) can be expressed
as:

I =as(t)- I, (23)

whereas as:(f) = exp (2x(t)) is the temporal behavior of the scintillation sequence and
represents the effect of the intensity fluctuations on the transmitted signal. In Section 5.1.1, the
space-to-time statistical conversion needed to derive Eq. (23) will be conveniently explained
by assuming the well-known Taylor’s hypothesis of frozen turbulence (Tatarskii, 1971; Taylor,
1938). The generation of this scintillation sequence is treated in detail further in this chapter.
As analyzed before, and by the central limit theorem, the marginal distribution of the
log-amplitude, x, is Gaussian. Thus,

1/2 2

1 (x —E[x]) }
=(—= — 2. 24
fX(X) (27[(7)2() &P [ 2(7)% @4)

Hence, from the Jacobian statistical transformation (Papoulis, 1991),

(x)
fill) = f"ﬂ , (25)
E

the probability density function of the intensity, I, can be identified to have a lognormal
distribution typical of weak turbulence regime. Then:

0= () () o[- 0] s

2 2
271(7X 8(7X

Theoretical and experimental studies of irradiance fluctuations generally center around the
scintillation index. It was evaluated in (Mercier, 1962) and it is defined as the normalized
variance of irradiance fluctuations:
E[I?
o2 = El }2 -1 (27)
(E[1])

With this parameter it is possible to define the weak turbulence regimes as those regimes for
which the scintillation index given in Eq. (27) is less than unity. From the following property
given in (Fried, 1966)

Elexp (a-8)] = exp |aE[g] + yaE[(s — Elg])?] |, 28)

obeyed by any independent Gaussian random variable, g, with a being a constant, we can
employ Eq. (28) to obtain the first and second order moments (mean value and variance,
respectively) of the irradiance fluctuation. So,

E[I(r,L)] = E[Io(r, L) exp[(2x(r, L)] = Ip(r, L) exp(2E[x(x, L) + 20%]), (29)
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where, as mentioned before, (7)% is the variance of log-amplitude of the scintillation. From

energy-conservation consideration (Fried, 1967; Strohbehn, 1978), E [I (r, L)} = Iy(r,L). Then,
inserting this result into Eq. (29), we obtain:

E[x(r,L)] = —03. (30)

By repeating the same process to the root mean square of the irradiance, I, then:

2
E[I*(r,L)] = E[(Io(r, L) exp[(2x(r,L))"] = I§(r, L) exp(407). (31)
If we insert Egs. (29)-(31) into Eq. (27), the scintillation index is finally derived as:
2 _ E[1?]
- 2
(E[1])

depending on (7)%. It can be seen (Andrews & Phillips, 1998; Andrews et al., 2001), that the

derived expression for the scintillation index is proportional to the Rytov variance for a plane
wave given by:

—1= exp(4a)2() -1z 40')% if (TIZ <1, (32)

o =1.23C2K7/6 L1178, (33)

where, again, C2 (m~2/3) is the index of refraction structure parameter, k = 271/A (m~ 1)
is the optical wave number, A (m) is the wavelength, and L (m) is the propagation path
length between transmitter and receiver. The Rytov variance represents the scintillation index
of an unbounded plane wave in weak fluctuations based on a Kolmogorov spectrum as
the shown in Eq. (4), but is otherwise considered a measure of optical turbulence strength
(Andrews et al., 2001).

4. Generation of scintillation sequences

Any kind of mechanism to model the behavior of the turbulent atmosphere as a time-varying
channel is necessary. Let the transmitted instantaneous optical power signal defined by

Zal Ppeak - pn(t —iTy) ieZ (34)

where the random variable a; takes the values of 0 for the bit “0” (off pulse) and 1 for the
bit “1” (on pulse), Pyeq the peak optical power transmitted each bit period, Tj, with active
pulse; and py (t) is the pulse shape having normalized amplitude. In this manner, the received
signal will consist, in a generic channel, of two terms: the first one is the line-of-sight (LOS)
contribution, and the second one is due to energy which is scattered to the receiver. This fact
will be thought as a multipath channel. Every contribution (the LOS component and each
multipath contribution) will travel through different paths in the atmosphere, each of them
with a different propagation delay, 7, (t). Thus, the expression for the received signal can be
written as:

szsa" s(t—1u(t)), (35)

where g, () is the time-varying scintillation sequence representing the effect of the intensity
fluctuations on the nth-multipath component. As discussed in (Fante, 1975; Ishimaru,
1997; Kennedy, 1968), dispersion and beam spreading due to turbulent atmosphere can be
neglected. Only for the very short pulses less than 100 ps proposed for high-data rate
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communications systems, or in extreme scenarios such as the one detailed in (Ruike et al.,
2007), where sand and dust particles are likely present, pulse spreading owing to turbulent
atmosphere must be included. For this latter case, physically, two possible causes exist for
this pulse spreading: scattering (dispersion) and pulse wander (fluctuations in arrival time),
although it is found that, under the condition of weak scattering, pulse wandering dominates
the contribution to the overall broadening of the pulse (Jurado-Navas et al., 2009; Young et al.,
1998).

Nonetheless, a general scenario where dispersion and beam spreading can be neglected is
assumed in this chapter. Hence, the channel impulse response, /1(7,;t), can be obtained by
substituting s(t) = 6(¢) into Eq. (35). Then,

h(tu;t) =) ase, (£)8(t — Tu(t)). (36)

Some channel models assume a continuum of multipath delays, in which case the sum in Eq.
(36) becomes an integral which simplifies to a time-varying complex amplitude associated
with each multipath delay, 7, as indicated in (Goldsmith, 2005):

h(tt) = /zxsc(é; B6(T — E)dE = ase(T;1), 37)

by using the definition of the Dirac delta function, 6(f). Note that h(t;t) has two time
parameters: the time t when the impulse response is observed at the receiver, and the time
t — T when the impulse is launched into the channel relative to the observation time, t. Hence,
h(t;t) is the response of the system to a unit impulse applied at time ¢.

An important characteristic of a multipath channel is the time delay spread, Ty, it causes
to the received signal. This delay spread equals the time delay between the arrival of the
first received signal component (LOS or multipath) and the last received signal component
associated with a single transmitted pulse. In these atmospheric optical communication
systems, the delay spread is small compared to the inverse of the signal bandwidth, as
commented above, then there is little time spreading in the received signal. Of course, the
propagation delay associated with the i-th multipath component is 7; < T, ¥ i so that
s(t — ;) =~ s(t) ¥ i, and then, Eq. (35) can be expressed as:

y(t) :S(t)zﬂ‘scn(t)- (38)

As the propagation delay is very small, then the corresponding multipath scintillation
sequences will be received in the same bit interval and having the same magnitude. Finally,

y(t) = s(t)asc(t). (39)

Then, the received light intensity is compounded of the transmitted instantaneous optical
power signal, s(t), initially transmitted, and affected in a multiplicative manner by the
scintillation sequence, s (f). This latter one represents the intensity fluctuations due to the
effect of the atmospheric turbulence on the transmitted signal, s(t).

Finally, a characteristic of asc(t) is its time-varying nature. This time variation arises from
the turbulent motion of the atmosphere described by Kolmogorov cascade theory (Tatarskii,
1971). The component of the wind velocity transverse to the propagation direction, u,
characterizes the average fade duration.
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A aisc(t) n(t)

s(t) y(t)

Fig. 1. Scheme model of the turbulent atmospheric optical model.

Obviously, the lognormal atmospheric channel model employed in the previous section
and represented by Eqs. (22)-(23) is consistent with Eq. (39) derived here. Hence, the
atmospheric channel model must be consisted of a multiplicative noise model that enhances
the effect of the atmospheric turbulence on the propagation of the transmitted optical signal.
Clearly, accordingly to Eqs. (22)-(23) and Eq. (39), an appropriate channel model for
describing these effects is shown in Fig. 1. This scalar model assumes the transmitted
field to be linearly polarized (no polarization modulation). This fact is realistic because the
depolarization effects of the atmospheric turbulence are negligible (Strohbehn, 1968; 1971;
Strohbehn & Clifford, 1967) and because it is reasonable to assume that the relevant noise has
statistically independent polarization components (Kennedy, 1968).

In Fig. 1 the real process s(t) represents the instantaneous optical power transmitted, and
given by Eq. (34). The additive white Gaussian noise is represented by n(t) and it is assumed
to include any shot noise caused by ambient light that may be much stronger than the
desired signal as well as any front-end receiver thermal noise in the electronics following
the photodetector. On the other hand, the factor A involves any weather-induced attenuation
caused by rain, snow, and fog that can also degrade the performance of atmospheric optical
communication systems in the way shown in (Al Naboulsi & Sizun, 2004; Muhammad et al.,
2005), but it is not considered in this chapter (A = 1). Finally, the process asc(t) = exp (2x(t))
denotes the temporal behavior of the scintillation sequence and represents the effect of the
intensity fluctuations on the transmitted signal, in the same way as Eq. (39) or Eq. (23).

5. Turbulent atmospheric channel model

The goal of this section is to obtain the time-varying scintillation sequence, denoted as as(f)
in Fig. 1, that represents the fluctuations of the intensity on the transmitted signal owing to the
adverse effect of the turbulent atmosphere. To achieve this purpose, we start with the channel
model proposed in (Jurado-Navas et al., 2007). Thus, to generate the as.(t) coefficients, a
scheme based on Clarke’s method (Rappaport, 1996) is implemented.

In brief, Clarke’s model is based on a low-pass filtering of a random Gaussian signal, z(t), as
it is shown in Fig. 2. Hence, the output signal, x(t), keeps on being statistically Gaussian,
but shaped in its power spectral density by the Hsc(f) filter. The output signal, x(¢), is the
log-amplitude perturbation of the transmitted optical wave, as explained in previous sections.
Next, x(t) is passed through a nonlinear device which converts its probability distribution
from Gaussian to lognormal, according to Eq. (26), typical of a weak turbulence regime, the
scenario that has been considered through this chapter.

5.1 Covariance function: weak fluctuations
The first task we need to achieve is to obtain the shape of the filtering stage displayed in Fig. 2.
In this respect, the theoretical Kolmogorov theory requires to solve the following expression
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Fig. 2. Block diagram to generate the scintillation sequence, as¢(t).

for the covariance function for irradiance fluctuations, B (r, L):

By(r,L) = 87°k*L /; /:o 1Dy (1) Jo (xr) (1 —cos LKng)deé, (40)

where « is the spatial wave number, @, (k) denotes the spatial power spectrum of refractive
index, k is the wave number, L represents the propagation path length whereas Jy(-) is the
Bessel function of the first kind and Oth order. In Eq. (40), an homogeneous and isotropic
random medium has been assumed in addition to a conversion to cylindrical coordinates since
By is a function of the transverse distance r (Ishimaru, 1997; Tatarskii, 1971). The obtention of
such an expression is conveniently treated in (Ishimaru, 1997; Lawrence & Strohbehn, 1970)
and will be the starting point to generate the filter Hsc(f). Nevertheless, Eq. (40) requires a
high computational complexity when any theoretical model for the spatial power spectrum of
refractive index, ®, (k), is employed. This feature is a critical point; in this respect, we develop
an efficient approximation to calculate such an integration that will be detailed below in
Subsection 5.1.2. Anyway, and by the Wiener-Khintchine theorem, we can obtain the resulting
temporal spectrum of irradiance fluctuations from which the filter frequency response, Hsc(f),
is obtained.

5.1.1 Taylor’s hypothesis of frozen turbulence

A useful property in turbulent media is the well-known Taylor’s hypothesis of frozen
turbulence (Jurado-Navas & Puerta-Notario, 2009; Tatarskii, 1971; Taylor, 1938). Modeling the
movement of atmospheric eddies is extremely difficult and a simplified “frozen air” model
is normally employed. Thus under this hypothesis, the collection of atmospheric eddies
will remain frozen in relation to one another, while the entire collection is transported as a
whole along some direction by the wind. When a narrow beam propagating over a long
distance is assumed, the refractive index fluctuations along the direction of propagation will
be well-averaged and will be weaker than those along the transverse direction to propagation.
Hence, consider the case when the atmospheric inhomogeneities move at constant velocity,
u,, perpendicular to the propagation direction. Taylor’s frozen-in hypothesis can be
expressed as (Lawrence & Strohbehn, 1970):

n(e,t+7)=n(r—u,1,t). (41)

Accordingly, a space-to-time conversion of statistics can be accomplished assuming the use of
Taylor’s hypothesis. The turbulence correlation time is therefore
_

T = w’ [s]; (42)
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where dj is the correlation length of intensity fluctuations. When the propagation length, L
satisfies the condition Iy < VAL < Lo, with A being the optical wavelength and with [y and
Lo being the inner and outer scale of turbulence, respectively, then dy can be approximated by
(Andrews & Phillips, 1998; Tatarskii, 1971)

do = \/E, [m]. (43)

5.1.2 Shaping a Gaussian temporary spectrum of irradiance

As explained at the begining of this subsection, to obtain the filter frequency response,
Hc(f), needed to generate the time-varying nature of scintillation sequence, as.(t), (see Fig.
2), the covariance function of irradiance fluctuations, B;, must be employed. Under the
assumption of weak irradiance fluctuations ((772( < 1), the covariance functions of I and x
are related by Bj(r) ~ 4By(r), in a similar reasoning to obtain Eq. (32), where r denotes
separation distance between two points on the wavefront. Taking this latter relationship into
account, the filter, Hsc(f), employed in the scheme and displayed in Fig. 2 corresponds,
for simplicity, to the log-amplitude fluctuations. Furthermore, based on the Taylor frozen
turbulence hypothesis, spatial statistics can be converted to temporal statistics by knowledge
of the average wind speed transverse to the direction of propagation. In the case of a plane
wave, this is accomplished by setting » = u T, where 1 is the wind velocity transverse to
the propagation direction in meters per second, and 7 is in seconds. Now, taking into account
an approximation developed by Andrews and Phillips (Andrews & Phillips, 1998), Eq. (40),
in the case of a plane wave, reduces to

i 2 2\ 5/6
]'5/6 1F (_?;LM) _0'60(M) :|, (44)

Bi(t,L) = 3.8707Re . 5T T

with F; (a; b; v) being the confluent hypergeometric function of the first kind whereas o7 is the

Rytov variance for a plane wave, as expressed in Eq. (33) that, under weak fluctuation, can
also be written as 07 = 7. Even so, Eq. (44) still suffers from significant numerical complexity,
especially if we try to solve the power spectral density (PSD), so an easier approach is
proposed by the authors in (Jurado-Navas et al., 2007). Hence, suppose small separation
distances in Eq. (44) so that Iy < r < /AL, and assume Bj(r) ~ 4B, (r). Now, if we consider

the following approximation for the hypergeometric function:

1Fi(a;b;—v) =1 — L%v lv| < 1; (45)
then
2
Ry(7) = E[x()x*(t — 7)] = 02 exp {— (Tlo) } =By (u, 1), (46)

where Ry (T) is the autocorrelation function of the process x(t). We must remark that, in

Eq. (46), it has been assumed a weak fluctuation regime so that we can state that (E[x])? =
(7;4C ~ 0. Thus Ry (T) = By(7), with By (7) being the covariance function of the log-amplitude

perturbation.
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5.2 Design of the filter frequency response
From Eq. (46), the resulting temporal spectrum of log-amplitude perturbation, x(t), can be
obtained (Ishimaru, 1997; Tatarskii, 1971) as:

Sx(f) = 4/000 By (T) cos2mfrdr. (47)

Since assumed a weak irradiance fluctuations regime, Ry (7) 2 By (7) so that we can apply the
Wiener-Khintchine theorem to solve Eq. (47). Thus the power spectral density of x is given

by:

HelPP = [ Re(r)exp (—rfoyit = 2rov/mexp [~ (xnof?]. @9)

To corroborate the Gaussian approximation regarding to the theoretical zero inner-scale
(Ip = 0) Kolmogorov spectrum, both of them have been plotted in Figure 3 with a remarkable
resemblance between them. As an interesting feature, the Kolmogorov spectrum was obtained
afters © T oo s
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Fig. 3. Zero inner-scale model of Kolmogorov spectrum (Andrews et al., 2001) against
Gaussian approximation conformed spectrum (Jurado-Navas et al., 2007).

To obtain the filter Hqc(f), we assume a causal channel. This fact is desirable and so, the
output sequence value of the system at the instant time t = ty depends only on the input
sequence values for t < to. This implies that the system is nonanticipative (Oppenheim,
1999). Thus if the system is causal, zero phase is not attainable, and consequently, some phase
distortion must be allowed. To design the nature of the filter phase it is sufficient to mention
two concepts: first, a nonlinear phase can have an important effect on the shape of a filtered
signal, even when the frequency-response magnitude is constant; and second, the effect of
linear phase with integer slope is a simple time shift. It seems to be desirable to design systems
to have exactly or approximately linear phase owing to the hard effort made to obtain the
modulus of the filter.
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Hence the filter frequency response is designed to have a linear phase:

Hsce(f) = [Hse(f)| exp (—j27tfa), (49)

where «a is the delay introduced by the system. The magnitude of « will be established to half
the length, M, of the filter impulse response, Hsc(f). Consequently, the final expression for
the behavior of the filter included in Figure 2 is:

Hse(f) = (O’)ZCTQ\/E)UZ exp [—%(HTQf)2:| exp [—j27fal. (50)

The procedure to accomplish from now onwards is the following: for the time domain
method, we first determine the impulse response of the filter, his.(f) = F Y Hse( f)}, but
represented in its discrete-time version: hgc[n],0 <k < M —1, with M being the length of
the filter impulse, whereas §~1{-} is the inverse Fourier transform operator. In this respect,
we initially select a sampling rate, Fs, that is five times the maximum bandwidth of the filter
which is proportional to the inverse of the turbulence correlation time, 7y, such that:

Fstp = 5. (51)

Ultimately, the scintillation will be interpolated up to a much higher sample rate as will be
discussed subsequently. This fact let us achieve a great reduction of computational load. We
denote {[n] as the discrete output sequence value of the filter at a frequency rate of Fs = 5/ 1
whereas x[n] represents the discrete log-amplitude scintillation with the proper bandwidth
for its power spectral density, as a consequence of the interpolation process that fills in the
missing samples of £[n].

5.3 Continuous-to-discrete time conversion

At this point, and as just commented, it is necessary to sample the continuous-time signal
of the filter converting it in a discrete time signal because of their advantages in realizations.
Hence we will obtain as.[n].

The chosen sampling frequency is Fs inversely proportional to the turbulence correlation time,
Tp. We initially choose Fs1y ~ 2 — 5, depending on the computer’s memory. This initial value is
not very relevant since the scintillation sequence will be interpolated later up to a much higher
sample rate. However, this fact let the discrete Fourier transform (DFT) computation time be
remarkably reduced. The election of the Fs; magnitude must satisfy the Nyquist sampling
theorem and should help avoid aliasing, should improve resolution and should reduce noise,
removing the possibility of obtaining a very oversampled signal with very few useful samples
of information (Oppenheim, 1999).

The N—point discrete version of the filter, denoted by Hsc[k], is given by

Hee[k] = Hee(e), 0<k<N-1,
27tk (52)
W=
where it is employed a N—point DFT, with w being the discrete frequency in rads. In Eq. (52),
H;(e/) is the Fourier transform of 15c[n], being this latter one the sequence of samples of the
continuous-time impulse response hs.(t), whereas H;.[k] is obtained by sampling H,c(e/*’) at
frequencies wy = % Consequently, from (Oppenheim, 1999), and substituting Eq. (50) into
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Eq. (52):

exp {—jZﬂ%kﬁFﬂ, 0<k<N/2

1 kEs\ 2
Hsc[k] = FS(U;TO\/E)UZ exp |:—2 (NTOWS)

(53)
Since the desired impulse response, hisc[k] 0 < k < M — 1, is a real sequence, by applying the
Hermitian symmetry property it follows that

Hsc[k} = Hsc(ejw)/ 0<k<N/2 w = 2717\'(]](;

Hy[N —k] = Hi[k], 1<k<N/2-1.

(54)

By applying the inverse-DFT (IDFT) of Hs[k], we can obtain hsc[n] = &' { Hsc[k]}. Consider
hsc[n] as a finite-length sequence, i.e. a finite impulse response (FIR) system. Accordingly,
one of the simplest method of FIR filter design is called the window method, explained in
(Oppenheim, 1999). The method consists in defining a new system with impulse response
hwsc[n]. This impulse response is the desired causal FIR filter given by

[ hse[n]w[n], 0 <n <M,
hwse[n] = { 0, otherwise. (35)
In Eq. (55), w(n] is the finite-duration window. In this paper, we use a M-points Hamming
window symmetric about the point M /2 of the form

(56)

win] = [ 054~ 046c0s(2rtn/M), 0 <n < M,
B 0, otherwise;

owing to it is optimized to minimize the maximum (nearest) side lobe. As a result, the
definitive expression for hysc[n] is:

1 N-1 27tkn
ol = o] T Hel exp [P osnsmon &7)
Consequently, the output sequence without being upsampled, x[#], accomplished with the
filter stage of Fig. 2, is of the form:

M1
Xnl=p Z huwsclk]z[n — k], (58)
k=0

where f is the scaling constant chosen to yield the desired output variance, 072(, with z[n]
representing the discrete version of z(t), this latter being a random unit variance Gaussian
input signal to be filtered by Hg.(f), as it is shown in Figure 2. We must remind that {[n] is
a Gaussian version of the scintillation sequence without being upsampled, i.e., at Fs = 5/ 19,
whereas x[n] is the upsampled and accuracy version of {[n].

Equation (58), however, makes reference to a linear convolution between two finite-duration
sequences: hysc[n], M samples in extent; and z[n], N samples in extent. Since we want the
product to represent the DFT of the linear convolution of hysc[n] and z[n], which has length
M + N — 1, the DFTs that we compute must also be at least that length, i.e., both hys[n] and
z[n] must be augmented with sequence values of zero amplitude. This process is referred to
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as zero-padding (Oppenheim, 1999) and it is necessary to adopt it to compute such a linear
convolution by a circular convolution avoiding time-aliasing of the first M — 1 samples. With
the purpose of employing fast Fourier transform (FFT) algorithms to compute all values of
the DFTs, it is required that we first zero-pad N samples of the white, unit variance random
Gaussian input sequence z[n] and M samples of lysc[n] out to 2N samples and compute
the FFT of each (zero-padded) sequence. As an interesting remark, for the computation of
all N values of a DFT using the definition, the number of arithmetical operations required
is approximately N2, while the amount of computation is approximately proportional to
Nlog, N for the same result to be computed by an FFT algorithm (Oppenheim, 1999). Even
more, when N is a power of 2, the well-known decimation-in-time radix-2 Cooley-Tukey
algorithm can be employed and then, the computational load is reduced to only (N/2) log, N.
Such an algorithm is based on a divide and conquer technique by breaking a length-N
DFT into two length-N/2 DFTs followed by a combining stage consisting of many size-2
DFTs called “butterfly” operations, so-called because of the shape of the data-flow diagrams
(Oppenheim, 1999). Thus, according to these criteria, the zero-pad versions of z[n] and hysc[n],
denoted as z;p[n] and hypsc;zp[1] respectively, are:

_fz[n], 0<n<N-1,
ZZPH*{ 0,0 N<n<2N-1; &
and I
ni, 0<n<M-—1,
hwsc;zp[n}:{ wsg/[} M<n<oN_1 (60)

Hence, after computing an FFT of length 2N to the sequences written in Egs. (59)-(60), we can
obtain the following expressions:

2N-1

Zzp[k} = Z Zzp[l’l]eijznkn/@N)/ (61)
n=0
and
ON-1 A
stc;zp[k] = Z hwsc;zp[n}€7]2ﬂkn/(2N). (62)
n=0

Now, the inverse FFT of the product, Z;p[k] - Hysc;zplk] is then computed and the first N
samples of the result are retained, i.e.

1 2N-1 .
= o5 L Zep [K] Huse;zp[K]e2™/ 2N) 0 < < N -1, (63)
k=0
Thus, once this latter expression were multiplied by the scaling constant, j, the result will
coincide with the first N samples of the linear convolution between hyc[1] and z[n].

x[n]

5.4 Increasing the sampling rate

Up until now, the temporal behavior of a Gaussian-amplitude scintillation sequence was
modeled. Nevertheless, this sequence lacks the right value of the temporal frequency of the
amplitude and, consequently, its adequate temporal variability. Such a temporal frequency
will be achieved including the frequency content of the intensity fluctuation power spectral
density. Fante, in (Fante, 1975), observed that the power spectral density bandwidth of the
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intensity fluctuations under weak turbulence is:

(64)

as a direct result of the atmospheric motion, with A being the optical wavelength, L is the
propagation path length and u; denotes the wind velocity transverse to the propagation
direction. By including this bandwidth reported in Eq. (64), we will be able to increase the
sampling rate by a factor of P. The way of yielding this is:
Fi=1=if, ic[2-5
(65)
R.
P == H,

where R is the desired bit rate in bits/s; and F;s is the sampling frequency. Thus, and found P,
the output samples of the filter Hs., are upsampled by linear interpolation:

n—i-P

xln] = Xl + {X[i +1] = &li] } ( ) if 1P <n < (+1)-P-1, (66)

0<i<N-1;
where, as we said before, x[n] is the upsampled version of {[n] shown in Eq. (58).

5.5 Changing the statistical description

At this point, we have modeled the known random log-amplitude of the scintillation, x, with
a statistically Gaussian PDF, f (x). Next, its PDF is converted from Gaussian to a lognormally
distributed one that is generally accepted for the irradiance fluctuations, I, under weak
turbulence conditions; or to a gamma-gamma PDF, a K PDF or even a Beckmann probability
density (Hill & Frehlich, 1997) that much more accurately reflects the statistics of the intensity
scintillations if Rytov variance (Andrews & Phillips, 1998) increases even beyond the limits of
the weak turbulence regime. The resulting PDF is here denoted as fi, (@sc).

The statistical conversion is carried out with the zero-memory nonlinear device that was
shown in Fig. 2. According to (Gujar & Kavanagh, 1968), this nonlinear device is just a
one-to-one transformation between x and a. of the form:

1) on
fx(X— %)MX\ = fae (’Xsc— %)M’Xsdf (67)

where f, (as:) is the PDF typical of the scintillation coefficients sequence (lognormal,
gamma-gamma or Beckmann, for instance). This fy, (#sc) PDF is identical to the probability
density function of the irradiance fluctuations, I. Consequently, for any point (x,asc) in
the transformation, the probability of x(t) being in the range (x — dx) to x is equal to the
probability that asc(t) is in the corresponding range of (asc — dusc) to ase, where 6y and dusc
are small increments beyond the points of study (o, ®sc,) in every moment. The known initial
points are given by the mean values of the sequences x and I, whose values are given by
(Huang et al., 1993; Zhu & Kahn, 2002):

Xo = —072(,

E[I] = asey; (68)
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Fig. 4. Comparison of time series realizations characterized by the Kolmogorov (magenta)
and Gaussian (blue) spectra.

where E[] denotes an ensemble average or, equivalently with the assumption of ergodicity, a
long-time average; and ¢? is the normalized irradiance variance.

To illustrate the effect of a Gaussian spectrum, Figure 4 shows segments of time series
realizations generated by the process of filtering white Gaussian noise with the proposed
Gaussian spectrum given in Eq. (48). This realization is compared with another obtained
by using the theoretical Kolmogorov spectrum.

6. Numerical results

To study the performance of both Kolmogorov and the proposed Gaussian spectra under
identical conditions of simulation, IM/DD links are assumed operating through a 250 m
horizontal path at a bit rate of 50 Mbps and transmitting pulses with on-off keying (OOK)
formats under the assumption of equivalent bandwidth of 50 MHz. The criterion of constant
average optical power is adopted, being one of the most important features of IM/DD
channels (Jurado-Navas et al., 2010). In relation to the detection procedure, a maximum
likelihood (ML) detection and a soft-decision decoding are considered respectively. A 830-nm
laser wavelength is employed. All these features are included in the system model proposed
in Figure 5 so that the spectra under study (Kolgomorov and Gaussian) can be compared
under identical conditions of simulation. Thus its remarkable elements are: first, the channel
model depicted in this chapter corresponding to a turbulent atmospheric environment, where
the component of the wind velocity transverse to the propagation direction, u | is taken to
be 8 m/s. This average wind velocity is a typical magnitude, at least in southern Europe
being the main reason to employ this concrete magnitude. On the other hand, the values of
turbulence strength structure parameter, C2 were set to 1.23 x 10~# and 1.23 x 10713 m~2/3
for (7)% = 0.01 and 0.1, respectively and for plane waves. As a second remarkable element of
Figure 5, a three-pole Bessel high-pass filter with a —1 dB cut-off frequency of 500 kHz for
natural (solar) light suppression is designed. However, this is an optional stage that can be
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Fig. 5. Atmospheric optical system model with Monte-Carlo bit error rate estimation.

suppressed. Finally, a five-pole Bessel low-pass filter employed as a matched filter constitutes
the third main stage of Figure 5. The receivers employed here are point receivers whereas the
weather-induced attenuation is neglected so that we concentrate our attention on turbulence
effects. Furthermore, the atmospheric-induced beam spreading that causes a power reduction
at the receiver is also neglected because we are considering a terrestrial link where beam
divergence is typically on the order of 10 uRad.

As a remarkable comment, with the inclusion of a wind speed, concretely 8 m/s as was
said before, we can study the effect of the channel coherence in terms of burst error rate
(Jurado-Navas et al., 2007) so that we obtain highly reliable link performance predictions. In
addition, in urban atmospheres, especially near or among roughness elements, strong wind
shear is expected to create high turbulent kinetic energy, as was detailed in (Christen et al.,
2007). In such assumptions, we could have employed a higher magnitude for the wind speed
without loss of generality. This fact even avoids a higher numerical complexity when we
generate the lognormal scintillation sequence. Finally, and for simplicity, we assume that
the wind direction is entirely transverse to the path of propagation. For special scenarios
where Taylor’s hypothesis may not be fully satisfied (scenarios affected by strong wind shear,
urban environments or tropical areas), the procedure needed to generate the scintillation
pattern may be modified as detailed in (Jurado-Navas & Puerta-Notario, 2009). In such cases,
scintillation sequences registered by a receiver will not be identical to the patterns seen by
another receiver except for a small shift in time, but the entrance of new structures into
the optical propagation path may introduce new fluctuations into the received irradiance.
Although Taylor’s hypothesis is a good estimate for many cases, and for mathematical
convenience this Taylor’s hypothesis is assumed to be fully satisfied in this paper, however,
the corrections proposed in (Jurado-Navas & Puerta-Notario, 2009) may be very useful to
obtain more realistic results in particular environments.

The obtained performance for an OOK format with a 25% duty cycle are presented in terms
of burst error rate average, as displayed in Figure 6 (Jurado-Navas et al., 2007). Hence, the
impact of the atmospheric channel coherence on the behavior of the different signalling
schemes can be taking into account, as was indicated in (Jurado-Navas et al., 2007), due to
burst error rate average represents a second order of statistics and so, the temporal variability
of the received irradiance fluctuations can influence on such metric of performance. However,
this fact is not considered simply by doing a bit error rate analysis since bit error rate does not
change with the variable wind speed, i.e., bit error rate is the first order of statistics and,
consequently, it is just a function of the lognormal channel variance. Accordingly such bursts
of errors are affected by the temporal duration of the turbulence-induced fadings, as it was
already contemplated in Eq. (48), that was depending on 7y and consequently, from Eq. (42),
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error length is established to 256, 192 and 128 bits (Jurado-Navas et al., 2007).

in inverse proportion to 1. Concretely, two time-varying scintillation sequences, as(t) are
represented in Figure 7 for two different average wind speed transverse to the direction of
propagation. Hence, different temporal variabilities in such scintillation sequences must entail
different performance in any atmospheric optical link.
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Fig. 7. Time-varying atmospheric scintillation sequence, as.(t) generated for an average wind
speed transverse to the direction of propagationof a) u | =8 m/s.b) u;, =2.5m/s.

To include these atmospheric coherence effects, we followed Deutsch and Miller’s
(Deutsch & Miller, 1981) definition of a burst error with lengths of 256, 192 and 128 bits



176 Numerical Simulations of Physical and Engineering Processes

respectively for the particular case of Figure 6, not containing more than L, — 1 consecutive
correct bits (L, = 5 as explained in (Deutsch & Miller, 1981)) any sequence of burst error. An
excellent agreement between our proposed channel model and the theoretical model can be
observed from the results included in such a figure.

Additionally, the main conclusion we can deduce from Figure 7 is the vulnerability to
the coherence of the channel in FSO communications, specially if the variance of the
log-amplitude of the intensity, (772(, increases. Thus, for instance, if comparing both the curves
where channel coherence has been taking into account to the ideal curves without the adverse
effect of the coherence, we can achieve a cut in average optical power requirements above 0.8
and 5.9 optical dB at a burst error rate of 107> for 0y = 0.01 and 0.1, respectively, assuming
a burst error with length of 256 bits. In this sense, the consideration of the atmospheric
coherence may be a key factor to value a much more realistic performance of these systems in
order to obtain a more detailed information about the design of a specific FSO link.

A wide set of results can be consulted in (Jurado-Navas et al., 2010) for different transmission
schemes including repetition coding, pulse-position modulation (PPM) or even an alternative
rate-adaptive transmission techniques based on the use of variable silence periods and on-off
keying (OOK) formats with memory.

7. Conclusion

In this chapter, we have presented a novel easily implementable model of turbulent
atmospheric channel in which the adverse effect of the turbulence on the transmitted optical
signal is included. We adopt some of the ideas proposed in (Brookner, 1970) that represent
the starting point for our investigation. Thus a locally homogeneous and locally isotropic
atmosphere is supposed through which a plane wave is transmitted under a weak fluctuation
regime. Under these assumptions, a time-varying atmospheric scintillation sequence is
generated and included in a multiplicative model. Some useful techniques have also been
employed to reduce the computational load: so, first, to generate the sequence of scintillation
coefficients, it has been chosen to adapt to optical environments the Clarke’s method, so
frequently used in fading channels in radiofrequency. It consists on filtering a random
statistically Gaussian signal. Hence, the output signal, i.e. x(t), keeps on being statistically
Gaussian, but shaped in its power spectral density by the filter, Hsc(f), employed in this
method. This Hs.(f) filter is forced to have a linear phase to minimize any effect on the
modulus of the filter. Second, the continuous-time signal of the filter is sampled, converting
it in a discrete time signal because of their advantages in realizations. In this respect, we
initially select a very low sampling rate, Fs, to obtain a first and decimated version of the
atmospheric scintillation sequence. This fact let the computation time be remarkably reduced.
The election of the F; magnitude must satisfy the Nyquist sampling theorem and should help
avoid aliasing, should improve resolution and should reduce noise, removing the possibility
of obtaining a very oversampled signal with very few useful samples of information. At the
end of the process, the scintillation sequence will be interpolated later up to a much higher
sample rate, which provides it with the adequate temporal variability.

As a third useful technique employed to reduce the computational load, the H,c(f) filter is
proposed to be as a causal FIR filter. For this purpose, a window method is considered,
employing a Hamming window owing to it is optimized to minimize the maximum side
lobe. Then, a zero-padding process to compute a linear convolution by a circular convolution
avoiding time-aliasing is implemented. A fast Fourier algorithm is employed to compute all
values of the DFTs so that the number of arithmetical operations required will be substantially
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reduced. In this respect, the number of samples of any FFT is a power of two. Thus the
well-known decimation-in-time radix-2 Cooley-Tukey algorithm is implemented.

However, the most important decision taken to reduce the computational load is the proposal
of a second-order Gaussian statistical model that substitutes the theoretical Kolmogorov
spectrum, offering a great analytical simplicity. The integration time involved in such process
is reduced 12-15 times in a DELL computer (8 Gb RAM, 8 CPU processors at 2.66 GHz each
one).

On another note, the model shown in (Gujar & Kavanagh, 1968) is taken into account. Hence
it makes the statistical conversion from Gaussian to the desired statistical nature (lognormal,
gamma-gamma, Beckmann, etc.) much easier and better modularized in structure due to its
well differentiated stages.

Finally, we must remark that a great accuracy in results using the approximation proposed
in Eq. (46) instead of the theoretical model is achieved and, secondly, we have demonstrated
the need to include consideration of channel coherence as a key factor to fully evaluate the
performance of atmospheric optical communication systems.
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9. Nomenclature

Bi(7), Bx(1) Covariance function of irradiance and log-amplitude, respectively.
c2 Refractive-index structure parameter.

Dy (r) Index of refraction structure function.

do Correlation length of intensity fluctuations.

E Vector amplitude of the electric field.

fe Power spectral density bandwidth of the intensity fluctuations.
fx(x) Probability density function of random log-amplitude scintillation.
fi(I) Probability density function of intensity fluctuations (=fy_ (sc)).
1Fi(a;¢;0) Confluent hypergeometric function of the first kind.

H Vector amplitude of the magnetic field.

hse(t) Impulse response of the filter Hyc(f).

hsc[n] Discrete version of the impulse response of the filter Hyc(f).
husc[n) hsc[n]w(n].

hawse;zp[n] Zero pad version of hysc[n].

Hse(f) Filter frequency response.

Hi. [k] Discrete version of the filter frequency response.

I Irradiance of the random field.

Iy Level of irradiance fluctuation in the absence of air turbulence.
Jo () Bessel function of order v.

k Wave number of beam wave (=27/A).

L Propagation path length.

Iy Inner scale of turbulence.

Lo Outer scale of turbulence.

n(r) Index of refraction.

o Average value of index of refraction.
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nq Fluctuations of the refractive index.

pa(t) Pulse shape having normalized amplitude.

r Transverse position of observation point.

r Magnitude of the transverse distance between two points.

S Random phase of the field.

Sy(w) Temporal spectrum of log-amplitude perturbation.

Up(r, z) Complex amplitude of the field in free space.

Uy (r,z), Up(r, z), First and second order perturbations of the complex amplitude of the field.
U(r, z) Complex amplitude of the field in random medium.

U, Component of the wind velocity transverse to the propagation direction.
w(n] Hamming window.

=
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a
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Time-varying atmospheric scintillation sequence.
Log-amplitude fluctuation of scintillation.
Discrete version of log-amplitude fluctuation of scintillation.
x[n] at a lower frequency rate.
Scalar spatial wave number.
Wavelength.
Power spectrum of refractive index.
Phase perturbations of Rytov approximation.
Phase of the optical wave in free-space.
,Po(r, L) First and second order phase perturbations of Rytov approximation.
Rytov variance for a plane wave.
Scintillation index (normalized irradiance variance).
Log-amplitude variance.
Turbulence correlation time.
Discrete frequency (in rads.).
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1. Introduction

Atmospheric optical communication has been receiving considerable attention recently for
use in high data rate wireless links (Juarez et al., 2006)-(Zhu & Kahn, 2002). Considering
their narrow beamwidths and lack of licensing requirements as compared to microwave
systems, atmospheric optical systems are appropriate candidates for secure, high data rate,
cost-effective, wide bandwidth communications. Furthermore, atmospheric free space optical
(FSO) communications are less susceptible to the radio interference than radio-wireless
communications. Thus, FSO communication systems represent a promising alternative to
solve the last mile problem, above all in densely populated urban areas.

However, even in clear sky conditions, wireless optical links may experience fading due to
the turbulent atmosphere. In this respect, inhomogeneities in the temperature and pressure of
the atmosphere lead to variations of the refractive index along the transmission path. These
random refractive index variations can lead to power losses at the receiver and eventually
to fluctuations in both the intensity and the phase of an optical wave propagating through
this medium (Andrews & Phillips, 1998). Such fluctuations can produce an increase in the
link error probability limiting the performance of communication systems. In this particular
scenario, the turbulence-induced fading is called scintillation.

The reliability of an optical system operating in an environment as the mentioned above
can be deduced from a mathematical model for the probability density function (pdf) of the
randomly fading irradiance signal. For that reason, one of the goals in studying optical wave
propagation through turbulence is the identification of a tractable pdf of the irradiance under
all irradiance fluctuation regimes.

The purpose of this chapter is to develop a new tractable pdf model for the irradiance
fluctuations of an unbounded optical wavefront (plane and spherical waves) propagating
through a homogeneous, isotropic turbulence to explain the focusing and strong turbulence
regimes where multiple scattering effects are important. Hence, the desired theoretical
solution can be useful in studying the performance characteristics of any optical
communication system operating through a turbulent atmosphere. We demonstrate through
this chapter that our proposed model fits very well to the published data in the literature, and
it generalizes in a closed-form expression most of the developed pdf models that have been
proposed by the scientific community for more than four decades.
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2. Background: distribution models

2.1 Limiting cases of weak turbulence and far into saturation regime.

Over the years, many irradiance pdf models have been proposed with varying degrees of
success. Under weak irradiance fluctuations it has been well established that the Born
and Rytov perturbation methods (Andrews & Phillips, 1998) predict results consistent with
experimental data, but neither is applicable in moderate to strong fluctuations regimes.

The Born approximation (de Wolf, 1965) is a perturbation technique and remains valid only
as long as the amplitude fluctuations remain small. This approximation assumes that the field
at the receiver can be calculated as a sum of the original incident field, Uy = A exp [j¢o], plus
the field scattered one time from a turbulent blob, U; = Aj exp [jS1]. It is assumed that the
real and imaginary parts of U are uncorrelated and have equal variances, so U is said to
be circular complex Gaussian. Thus, from the first-order Born approximation, the irradiance
of the field along the optical axis, I, has, from (Andrews & Phillips, 1998), a pdf given by the
modified Rice-Nakagami distribution,

1

2
ilh) = prexp | - 01D

2by

24
IO(Zb()\fI), I1>0, 1)

where 2by=E[A?] and the operator E[-] stands for ensemble average, being Io(-) the modified
Bessel function of the first kind and order zero. As shown above, the Born approximation
includes only single scattering effects. However, for many problems in line-of-sight
propagation, multiple scattering effects cannot be ignored and so, the results based on the
Born approximation have a limited range of applicability, particularly at optical wavelengths.
Due to the problems associated to the Born approximation, greater attention was focused
on the Rytov method for optical wave propagation. Rytov’s method is similar to the Born
approximation in that it is a perturbation technique, but applied to a transformation of the
scalar wave equation (Andrews & Phillips, 1998; de Wolf, 1965). It does satisfy one of the
mentioned objections to the Born approximation in that it includes multiple scattering effects
(Heidbreder, 1967). However, these effects are incorporated in an inflexible way which does
not depend on the turbulence or other obvious factors. The method does contain both the Born
approximation and geometrical optics as special cases, but does not extend the limitations on
these methods as much as originally claimed. In this approach, the electric field is written
as a product of the free-space field, Uy, and a complex-phase exponential, exp (¥). Based on
the assumption that the first-order Born approximation, Uy, is a circular complex Gaussian
random variable, it follows that so is the first-order Rytov approximation, ¥ = x + jS, where
x and S denote the first-order log-amplitude and phase, respectively, of the field. Then, the
irradiance of the field at a given propagation distance can be expressed as:

I=|Up?exp (¥ +¥*) = Iyexp (2x), )

as was written in (Andrews & Phillips, 1998). In Eq. (2), Iy = | Ag|? is the level of irradiance
fluctuation in the absence of air turbulence that ensures that the fading does not attenuate
or amplify the average power, i.e., E[I] = |Ag|?. This may be thought of as a conservation
of energy consideration and requires the choice of E[x] = —(7)2(, as was explained in (Fried,
1967; Strohbehn, 1978), where E[x] is the ensemble average of log-amplitude, whereas (7)2( is its
variance. By virtue of the central limit theorem, the marginal distribution of the log-amplitude
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is Gaussian distributed. Hence, from the Jacobian statistical transformation, the probability
density function of the intensity can be identified to have a lognormal distribution

2
11 exp(_[ln(1/10)+2a§] )

2
271(77(

as indicated in (Andrews & Phillips, 1998). Nevertheless, it has also been observed that the
lognormal distribution can underestimate both the peak of the pdf and the behavior in the
tails as compared with measured data (Churnside & Frehlich, 1989; Hill & Frehlich, 1997).

As the strength of turbulence increases and multiple self-interference effects must be taken
into account, greater deviations from lognormal statistics are present in measured data. In
fact, it has been predicted that the probability density function of irradiance should approach
a negative exponential in the limit of infinite turbulence (Fante, 1975; de Wolf, 1974). The
negative exponential distribution is considered a limit distribution for the irradiance and it is
therefore approached only far into the saturation regime.

2.2 Modulated probability distribution functions

Early theoretical models developed for the irradiance fluctuations were based on assumptions
of statistical homogeneity and isotropy. However, it is well known that atmospheric
turbulence always contains large-scale components that usually destroy the homogeneity and
isotropy of the meteorological fields, causing them to be non-stationary. This non-stationary
nature of atmospheric turbulence has led to model optical scintillations as a conditional
random process (Al-Habash et al., 2001; Churnside & Clifford, 1987; Churnside & Frehlich,
1989; Fante, 1975; Hill & Frehlich, 1997; Strohbehn, 1978; Wang & Strohbehn, 1974; de Wolf,
1974), in which the irradiance can be written as a product of one term that arises from
large-scale turbulent eddy effects by a second term that represent the statistically independent
small-scale eddy effects.

One of the first attempts to gain wide acceptance for a variety of applications was the
K distribution (Abdi & Kaveh, 1998; Jakerman, 1980) that provides excellent models for
predicting irradiance statistics in a variety of experiments involving radiation scattered by
turbulent media. The K distribution can be derived from a mixture of the conditional negative
exponential distribution and a gamma distribution. In particular, in this modulation process,
the irradiance is assumed governed by the conditional negative exponential distribution:

A = gew (-), 120 o

as written in (Andrews & Phillips, 1998); whereas the mean irradiance, b = E[I], is itself a
random quantity assumed to be characterized by a gamma distribution given by

fo(b) = % exp (—ab), b>0, a>0. @)

In Eq. (5), I'(-) is the gamma function and « is a positive parameter related to the
effective number of discrete scatterers. The unconditional pdf for the irradiance is obtained
by calculating the mixture of the two distributions presented above, and the resulting
distribution is given by:

f(l) = /OOO F|b) fo(b)db = %(u) “T' Ky (2Val), >0, a>0 (6)
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as detailed in (Andrews & Phillips, 1998). In Eq. (6), K,(x) is the modified Bessel function
of the second kind and order p. The normalized variance of irradiance, commonly called
the scintillation index, predicted by the K distribution satisfies o7 = 1+ 2/a, which always
exceeds unity but approaches it in the limit « — co. This fact restricts the usefulness of this
distribution to moderate or strong turbulence regimes; even where it can be applied it tends
to underestimate the probability of high irradiances (Churnside & Clifford, 1987) and, thus,
to underestimate higher-order moments. Certainly, it is not valid under weak turbulence for
which the scintillation index is less than unity. One attempt at extending the K distribution
to the case of weak fluctuations led to the homodyned K (HK) (Jakerman, 1980) and the I-K
distribution (Andrews & Phillips, 1985; 1986), this latter with a behavior very much like the
HK distribution (Andrews & Phillips, 1986), but it did not generally provide a good fit to the
experimental data in extended turbulence (Churnside & Frehlich, 1989).

With respect to other models based on modulation process, Wang and Strohbehn
(Wang & Strohbehn, 1974) proposed a distribution, called log-normal Rician
(LR) or also Beckmann’s pdf, which results from the product of a Rician
amplitude and a lognormal modulation factor. Thus, the observed field
can be expressed, from (Churnside & Clifford, 1987), as:

U = (Uc + Ug)exp (x +jS), @)

where U is a deterministic quantity and U is a circular Gaussian complex random variable,
with x and S being the log-amplitude and phase, respectively, of the field, assumed to be real
Gaussian random variables. The irradiance is therefore given by I = |Uc + Ug|?exp (2x),
where |Uc + Ug| has a Rice-Nakagami pdf and the multiplicative perturbation, exp (2x), is
lognormal. Then, the pdf is defined by the integral:

A1) = [ f (tlexp 22]) Flexp 22])dlexp (20)), ®

where f(I|exp [2x]) is the conditional probability density function of the irradiance given
the perturbation exp (2x), governed by a Rician distribution; whereas f(exp [2x]) denotes
the lognormal pdf for the multiplicative perturbation. Then, Eq. (8) can be expressed as
(Al-Habash et al., 2001):

1/2
(I+r)exp(—r) [® (1+r)rl (1+7)I  [Inz+(1/2)02]? | dz
filn) =S D ERAE [0 BTN bexp - - ; <
V270, 0 zZ z 20% z
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where r = |Uc|?/|Ug|? is the coherence parameter, z and o2 represent the irradiance

modulation factor, exp (2x), and its variance, respectively, and Iy(-) is the zero-order modified
Bessel function of the first kind. Although it provides an excellent fit to various experimental
data, the LR pdf has certain impediments, for instance, a closed-form solution for this integral
is unknown or its poor convergence properties that makes the LR model cumbersome for
numerical calculations.

Under strong fluctuations, the LR model reduces to the lognormally modulated exponential
distribution (Churnside & Hill, 1987), but this latter distribution is valid only under strong
fluctuation conditions.

Finally, in a recent series of papers on scintillation theory (Al-Habash etal., 2001;
Andrews etal., 1999), Andrews et al. introduced the modified Rytov theory and
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proposed the gamma-gamma pdf as a tractable mathematical model for atmospheric
turbulence. This model is, again, a two-parameter distribution which is based on a doubly
stochastic theory of scintillation and assumes that small scale irradiance fluctuations are
modulated by large-scale irradiance fluctuations of the propagating wave, both governed by
independent gamma distributions. Then, from the modified Rytov theory (Andrews et al.,
1999), the optical field is defined as U = Upexp (¥ +¥y), where ¥, and ¥, are
statistically independent complex perturbations which are due only to large-scale and
small-scale atmospheric effects, respectively. Then, the irradiance is now defined as the
product of two random processes, i.e.,, I = IyI,, where I, and I, arise, respectively,
from large-scale and small-scale atmospheric effects. Moreover, both large-scale and
small-scale irradiance fluctuations are governed by gamma distributions, i.e.:

fe(l) = % exp (—aly), >0, a>0, (10)
B-1
fy(ly) = % exp (—ply), I,>0,  p>0. D

To obtain the unconditional gamma-gamma irradiance distribution, we can form:

2(ap)P)2
T(@)T(p)

where K,(+) is the modified Bessel function of the second kind of order a. In Eq. (12), the
positive parameter a represents the effective number of large-scale cells of the scattering
process, larger than that of the first Fresnel zone or the scattering disk whichever is larger
(Al-Habash et al., 2001); whereas f similarly represents the effective number of small-scale
cells, smaller than the Fresnel zone or the coherence radius. This gamma-gamma pdf has
been suggested as a reasonable alternative to Beckmann’s pdf because makes computations
easier in comparison with this latter distribution.

Now, through this chapter, we propose a new and generic propagation model and, from it,
and assuming a gamma approximation for the large-scale fluctuations, we obtain a new and
unifying statistical model for the irradiance fluctuations. The proposed model is valid under
all range of turbulence conditions (weak to strong) and it is found to provide an excellent fit to
the experimental data, as will be shown through Section 5. Furthermore, the statistical model
presented in this chapter can be written in a closed-form expression and it contains most of the
statistical models for the irradiance fluctuations that have been proposed in the bibliography.

fill) = /(;oofy(lux)fx(IX)de = 1(”“*‘5)/2—1[(“7!3(2\/7[51), I>0, (12)

3. Generation of a new distribution: the M distribution

As was pointed out before, the Rytov theory is the conventional method of analysis in
weak-fluctuations regimes, as shown in Eq. (2). Extensions to such theory were developed
in (Churnside & Clifford, 1987; Wang & Strohbehn, 1974) to obtain the LR model; and in
(Al-Habash et al., 2001) to generate the gamma-gamma pdf as a plausible and easily tractable
approximation to Beckmann’s pdf. Both models, of course, approximate the behavior of
optical irradiance fluctuations in the turbulent atmosphere under all irradiance fluctuation
regimes. In fact, the LR model can be seen as a generic model because includes the
lognormal distribution which can be employed under weak turbulence; the lognormally
modulated exponential distribution used in strong path-integrated turbulence and, moreover,
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it can be reduced to the negative exponential pdf in extremely strong turbulence regimes
(Churnside & Frehlich, 1989). On this basis, we propose a more generic distribution model
that includes, as special cases, almost all valid models and theories that have been previously
proposed in the bibliography, unifying them in a more general closed-form formulation.
Thus, among others, the Rice-Nakagami, the lognormal, the K and the HK distribution, the
gamma-gamma and the negative-exponential models are contained and, as we detail through
this chapter, a gamma-Rician distribution can be derived from our proposed model as a very
accurate alternative to the LR pdf for its simple closed-form representation (we must remark
that a closed-form solution for the LR pdf is still unknown).

3.1 The model of propagation including a new scattering component coupled to the
line-of-sight contribution

Assume an electromagnetic wave is propagating through a turbulent atmosphere with a
random refractive index. As the wave passes through this medium, part of the energy is
scattered and the form of the irradiance probability distribution is determined by the type
of scattering involved. In the physical model we present in this chapter, the observed field
at the receiver consists of three terms: the first one is the line-of-sight (LOS) contribution,
Ur, the second one is the component which is quasi-forward scattered by the eddies on the
propagation axis, Ug and coupled to the LOS contribution; whereas the third term, Usc, is due
to energy which is scattered to the receiver by off-axis eddies, this latter contribution being
statistically independent from the previous two other terms. The inclusion of this coupled
to the LOS scattering component is the main novelty of the model and it can be justified
by the high directivity and the narrow beamwidths of laser beams in atmospheric optical
communications. The model description is depicted in Fig. 1.

lependent scatter componel

LOS compont (U)

Fig. 1. Proposed propagation geometry for a laser beam where the observed field at the
receiver consists of three terms: first, the line-of-sight (LOS) component, U ; the second term
is the coupled-to-LOS scattering term, Ug, whereas the third path represents the energy

scattered to the receiver by off-axis eddies, Ug .

Mathematically, we can write the total observed field as:
u:(uL+u§+u§) exp (x + ) (13)

where
Uy = VGVQexp (jpa), (14)
us = pVGy/2bgexp (jps), (15)
us§ =./(1-p)us; (16)
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being Ug and Ug statistically independent stationary random processes. Of course, Uy and
Ug are also independent random processes. In Eq. (13), G is a real variable following a
gamma distribution with E[G] = 1. It represents the slow fluctuation of the LOS component.
Following the same notation as (Abdi et al., 2003), the parameter Q0 = E[|U|?] represents
the average power of the LOS component whereas the average power of the total scatter
components is denoted by 2by = E]] Ug\z + \U§3|2} ¢4 and ¢p are the deterministic phases of
the LOS and the coupled-to-LOS scatter components, respectively. On another note, 0 < p <1
is the factor expressing the amount of scattering power coupled to the LOS component. This
p factor depends on the propagation path length, L, the intensity of the turbulence, the optical
wavelength, A, the beam diameter, the average scale of inhomogeneities (I = \/H), the
beam divergence due to the atmospheric-induced beam spreading, and the distance between
the different propagation paths (line of sight component and scattering components), due
to if the spacing between such paths is greater than the fading correlation length, then
turbulence-induced fading is uncorrelated. Finally, U is a circular Gaussian complex random
variable, and x and S are, again, real random variables representing the log-amplitude and
phase perturbation of the field induced by the atmospheric turbulence, respectively.

As an advance, the proposed model, with the inclusion of a random nature in the LOS
component in addition to a new scattering contribution coupled to the LOS component,
offers a highly positive mathematical conditioning due to its obtained irradiance pdf can be
expressed in a closed-form expression and it approaches as much as desired to the result
derived from the LR model, for which a closed-form solution for its integral is still unknown.
Moreover, it has a high level of generality due to it includes as special cases most of the
distribution models proposed in the bibliography until now.

From Eq. (13), the irradiance is therefore given by:

I :‘UL + Ug + Ug‘zexp (2x) =
, (17)
—|VGVQexp (j9a) + VoVGV/2boexp (ign) + /(1 - p)US| exp (20).

As indicated in (Churnside & Clifford, 1987), the larger eddies in the atmosphere produce the
lognormal statistics and the smaller ones produce the shadowed-Rice model analogous to the
one proposed in (Abdi et al., 2003).

As was explained in (Wang & Strohbehn, 1974), there is no strong physical justification for
choosing a particular propagation model and different forms could be chosen equally well.
However, there exists some points to support our proposal: so if we assume the conservation
of energy consideration, then E[I] = Q + 2by and requires the choice of E[x] =—0%, as
was detailed in (Fried, 1967; Strohbehn, 1978). Finally, a plausible justification for the
coupled-to-LOS scattering component, Ug, is provided in (Kennedy, 1970). There, it is said
that if the turbulent medium is so thin that multiple scattering can be ignored, the multipath
delays of the scattered radiation collected by a diffraction-limited receiver will usually be
small relative to the signal bandwidth. Then the scattered field will combine coherently with
the unscattered field and there will be no-“interfering” signal component of the field, in a
similar way as Ug combines with U} in our proposed model. Of course, when the turbulent
medium becomes so thick, then the unscattered component of the field can be neglected.

3.2 Malaga (M) probability density function
From Eq. (17), the observed irradiance of our proposed propagation model can be written as:
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I=|up+u§ + Ug‘zexp (2%) = YX,
i (18)

{ = ’UL +US + US| (small-scale fluctuations)

x2 exp (2x) (large-scale fluctuations),

where the small-scale fluctuations denotes the small-scale contributions to scintillation
associated with turbulent cells smaller than either the first Fresnel zone or the transverse
spatial coherence radius, whichever is smallest. In contrast, large-scale fluctuations of
the irradiance are generated by turbulent cells larger than that of either the Fresnel zone
or the so-called “scattering disk”, whichever is largest. From Eq. (13), we rewrite the
lowpass-equivalent complex envelope as:

R(t) = (UL +U§ +US) = VG (VOexp (jga) + vpv2boexp (i) ) +1/(1-p)US, (19)

so that we have the identical shadowed Rice single model employed in (Abdi et al., 2003),
composed by the sum of a Rayleigh random phasor (the independent scatter component, Ug)
and a Nakagami distribution (v/G, used for both the LOS component and the coupled-to-LOS
scatter component). The other remaining terms in Eq. (19) are deterministics. Then, we
can apply the same procedure exposed in (Abdi et al., 2003) consisting in calculating the
expectation of the Rayleigh component with respect to the Nakagami distribution and then
deriving the pdf of the instantaneous power. Hence, the pdf of Y is given by:

B - L B TR o
fY(y) - v l:,yﬁ+Ql:| exp|: ,)/:| 15 (ﬁrlr,y (’)/‘B-FQ’)]/)’ (20)

where B £} (E[G])?/Var[G] is the amount of fading parameter with Var[-] as the variance
operator. We have denoted Q'=Q-+p2by+2+/2bgQpcos (¢4 —¢p) and 7y = 2by(1 — p).
Finally, 1F; (a;c; x) is the Kummer confluent hypergeometric function of the first kind.

Otherwise, the large-scale fluctuations, X 2 exp (2x), is widely accepted to be a lognormal
amplitude (Churnside & Clifford, 1987) but, however, as in (Abdi et al., 2003; Al-Habash et al.,
2001; Andrews & Phillips, 2008; Phillips & Andrews, 1982), this distribution is approximated
by a gamma one, this latter with a more favorable analytical structure. This latter distribution
can exhibit characteristics of the lognormal distribution under the proper conditions, avoiding
the infinite-range integral of the lognormal pdf. Then, the gamma pdf is given by:

D(DC

fx(x) = mx

“Lexp (—ax), (21)

where « is a positive parameter related to the effective number of large-scale cells of the
scattering process, as in (Al-Habash et al., 2001). Now, the statistical characterization of the
model presented in Eq. (17) will be formally accomplished.S

Definition: Let I=XY be a random variable representing the irradiance fluctuations for a propagating
optical wave. It is said that I follows a generalized M distribution if X and Y are random variable
distributions according to Egs. (21) and (20), respectively. That the distribution of I is a generalized
M distribution can be written in the following notation: I ~ MG (a, B,v,0,Q'), being «, B, v, p,
the real and positive parameters of this generalized M distribution. And for the pivotal case of p being a
natural number, then it is said that I follows an M distribution and it is denoted by M (a, B, 7, p, Q’).
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Lemma 1: Let [ ~ M(C)(«, B,7,0,Q'). Then, its pdf is represented by:

fi(1) =A@ Y a1 K, (2 = ) , (22)
k=1

where

AlG) £ ch% ( L ,)ﬁ;
Y12 (@) \ 7B+ Q
(23)

k
,6) A (B)k—1 (a7)?
2 , =1
(k= DP5 10 + 1)
In Eq. (22), Ky(+) is the modified Bessel function of the second kind and order v whereas T(+) is the
gamma function.
Otherwise, let T ~ M(«, B,7v,0,Q), i.e., B is a natural number; then, its pdf is given by:

B
B agk_ apl
fi(l) = Ak;“kl Ky—k (2\/ B ) (24)

AéA(G)( 7B )g.
")/‘B+Q/ 7

w2 ()t (5) () )™

In Eq. (24), Ky(-) is, again, the modified Bessel function of the second kind and order v. Moreover,

in Eq. (25), A(C) was one of the parameters defined in Eq. (23), whereas (f) represents the binomial
coefficient. In the interest of clarity, the proof of this lemma is moved to Appendix A.

To conclude this subsection, we can point out that the pdf functions given in Eq. (22)
and Eq. (24) can be expressed as a discrete mixture and a finite discrete mixture,
respectively (see Chap. 7 of Ref. (Charalambides, 2005)) involving a resized irradiance
variable, I’, in the form: fp(I') = Yy wy- fog(I'), being the mixed distribution, fgg(I'),
a gamma-gamma pdf whereas the weight function, wy, satisfies that Y w; = 1 due to
Jo fry)dy = Ty wi - [5° fo(y)dy = 1 by definition and 5 fg6(y)dy=1 also by definition.

where

(25)

3.3 Moments of the M probability distribution

In this subsection, the k' moment of the M probability distribution is obtained.
Lemma 2: Let I the randomly fading irradiance signal following a generalized M distribution and

expressed as I ~ M(C)(w, B,7,p, Q). Then, its centered moments, denoted by m]((c) (I), are given by:

5 !
m S (2 E [Ik] = rr(&;r;) (w;fg,) VT (k+1)oFy <k+1,ﬁ;1;7ﬁ?_0,>, (26)

where Fy (a,b;c; x) is the Gaussian hypergeometric function. In addition, if the intensity signal now
follows an M distribution, I ~ M(w, B,7,p, Q), with B being a natural number, then its centered
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moments are given by:

T4kl 4 VPP Bo1\1 a " T(k+r+1)
="y (e Eo(r)ﬁ TOB ) ) gy @
1B+Q

For the sake of clarity of the whole chapter, the proof of this lemma is, again, moved and
extensively explained in Appendix B.

3.4 Cumulative distribution function (cdf) of the M probability distribution
In this subsection, the cumulative distribution function (cdf) of the M probability distribution
is obtained.
Lemma 3: Let I the randomly fading irradiance signal following a generalized M distribution and
expressed as [ ~ M(C)(a, B,,p, Q). Then, its cdf is given by:
It A(G)
P(ISIT):/ fI(I)dI:THX
0 I %

o —(a—k)
ay —(zx—k)—l( _1/2 /0‘) I'(a—k) ( , . )
2 21 — —— 1 hlk+L1—a+kk+2; +
l; I% { T ¥ k+1 172 yIr

(a=k) pp _
42l (ak) (21;1/21 /%) % B (zx+1;1 fa—kat2; %) }
T
(28)

where I is a threshold parameter, AG) gnd a,EG) are defined in Eq. (23) and 1F(a; ¢, d; x) deno-tes

a generalized hypergeometric function. Nevertheless, if the irradiance signal now follows an M
distribution, I ~ M(a, B, v, p, Q/), with B being a natural number, then its cdf is given by:

Pu<i = [ fitnar= Eep
T
£, g o—(a—k)-1 21;% ap _(;_k) ‘ . . ap
k;g (k+1 7[5+Q’> (o — )1Fz<k+1,1—a+k,k+2,w>+
B (a—k)
+21-(a=k) (ilf_; /ﬂsafﬁﬂ) I(k—a)1F (Dé+1;1+a—k,a+2;ﬁ> /
(29)

where, again, It is a threshold parameter and A and ay, are defined in Eq. (25). The proof of this
lemma is treated in Appendix C.

4. Derivation of existing distribution models

In this section, we derive, from our proposed generalized distribution, M (G) (, B, 7,0, e} ), (or
from M («, B, 7, p, o ), if its B parameter is a natural number) most of the existing distribution
models that have been proposed for atmospheric optical communications in the bibliography.
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4.1 Rice-Nakagami and lognormal distribution functions

Consider the propagation model presented in this chapter and written in Eq. (17). Thus,
starting with the first models proposed in the bibliography for weak turbulence regimes, we
indicated in Section 2 that, from the first-order Born approximation, the irradiance, I, has a
pdf governed by the modified Rice-Nakagami distribution (see Eq. (1)). From Eq. (17), if we
assume both p = 0 and Var[|U} |]= 0, where Var[-] represents the variance operator, then Uy
becomes a constant random variable where E[|U|] = v/Q since E[G] = 1, as was pointed
out in Section 2. If we consider that x is a zero mean random variable (strictly speaking,
Elx] = —(7)2( due to conservation energy consideration (Fried, 1967; Strohbehn, 1978)) and
Var[x]=Var[S]| = 0, then, from (Andrews & Phillips, 1998), Eq.(17) becomes:

I = [VGvaexp (jpa) + U (30)

Equation (30) represents the first-order Born approximation, as indicated in
(Andrews & Phillips, 1998). As Ug = Agexp (jSg) is a circular Gaussian complex random
variable where E[| Ué|2] = 2by = v owing to p = 0; and if we denote Ag = v/GV/Q, then the
irradiance, I, of the field along the optical axis has a modified Rice-Nakagami distribution
given by:

1

fill) = 2 exp

(A5 +1)
v

m(%&%ﬁ, I1>0, (31)

identical to Eq. (1). Thus, the Rice-Nakagami distribution is included in our proposed
M distribution. Moreover, as indicated in (Strohbehn, 1978), when A% /v — oo, then
the Rice-Nakagami distribution leads to a lognormal distribution, one of the most widely
employed distributions for weak turbulence regimes and derived by the used of the Rytov
method and the application of the central limit theorem.

4.2 Rytov model

Thus, consider now the following different perturbational approach, the Rytov
approximation, again restricted to weak fluctuation conditions. In this case, as was
commented above, the pdf for the irradiance fluctuations is the lognormal distribution shown
in Eq. (3). We can deduce this model from our proposed perturbation model written in
Egs. (13) and (17). Thus, lets assume again Var[|U|]= 0, so Uy becomes a constant random
variable where E[|U} [|=v/Q since E[G]=1 as was discussed in Section 2. If the average power
of the total scatter components is established to 2by = 0 (no scattering power, Ug = Ug =0),
then Eq. (17) reduces to:

2
I= |LIL|2 exp (2x) = ‘\FG\/ﬁexp (jpa)| exp(2x). (32)
2
’ as the irradiance fluctuation in the absence of air

If we identify Ip=|vGvQexp (jpa)

turbulence and we assume the conservation of energy consideration E[x]= —(772(, then we have
the same conditions exposed in Eq. (2) so that the pdf of the intensity could be identified to
have a lognormal distribution, as in Eq. (3). However, we have approximated the behavior
of the large-scale fluctuations, X = exp (2x), by a gamma distribution due to it is proven
that lognormal and gamma distributions can closely approximate each other (Clark & Karp,
1970). Thus, the behavior of the classical first-order Rytov approximation is included in our
proposed propagation model.
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4.3 Generation of existing modulated probability density functions

4.3.1 K, HK and negative exponential distribution

Now, to obtain the modulated probability distribution functions that have been widely
employed in the bibliography, we must start calculating the moment generating function
(MGEF) of the random processes X and Y defined in Eq. (18). The MGF for a generic function,

fz(z),is defined by Mz (s) 2r {fz(z); —s}, where L[] denotes the Laplace transform. Hence,
from Egs. (2.68) and (2.22) of Ref. (Simon & Alouini, 2005), we have:

My (s) & L[y (v); —s] = (

T ()
Mx(s) £ Llfx (x); —s] = ﬁ (34)

for fy(y) and fx(x) given in Eqgs. (20) and (21), respectively. Now, if Q = 0 (no LOS power)
and p = 0 (no coupled-to-LOS scattering power, Ug), ie, QO =0, then Eq. (33) is reduced to:

My(s) = (1—17s)", (35)

and Eq. (20) is, obviously, reduced to an exponential distribution:

fry) = % exp [— %} : (36)

In addition, we can obtain this exponential distribution when g is unity in Eq. (33), and

Eq. (36) would be written in the same form, replacing -y parameter by v + Q. Anyhow, as
was detailed in (Andrews & Phillips, 1998), with a negative exponential distribution for fy (y)
and a gamma distribution for fx(x), the unconditional pdf for the irradiance is obtained by
calculating the mixture of these two latter distributions in the same form indicated in Eq. (6),
leading to the K-distribution model. Of course, as the effective number of discrete scatterer
cells, a, becomes unbounded (a huge thick turbulent medium), i.e., x — oo, the K distribution
tends to the negative exponential distribution as the gamma distribution that governs X
approaches a delta function (Andrews et al., 2001). So the K distribution and the exponential
one are also included in our proposed statistical model. Finally, a generalization of the K
distribution, the homodyned K (HK) distribution is also included (Andrews & Phillips, 1986).
This HK model is composed by a Rice-Nakagami distribution and a gamma distribution. The
Rice-Nakagami model can be deduced in a similar way as Eq. (31). However, the gamma
model needed to build the unconditional HK pdf is the distribution function of the fluctuating
average irradiance of the random field component (Ug since Ug:O as p=0 for deriving the
Rice-Nakagami model from our M distribution). Thus, we have to identify the large-scale

fluctuations, X, given in Eq. (18) with the parameter 7=2by=E[|US|?] so that x 2 7 in Eq.
(21). Then, the HK distribution is also contained in our proposed model as a special case of
the M distribution.
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4.3.2 Gamma-gamma model

On the other hand, and returning again to our original model given in Egs. (20) and (21) with
their MGFs calculated in Eqs. (33) and (34), we now take p = 1, i.e., there only exists LOS
component, Uy, and coupled-to-LOS scattering component, USC, in our propagation model
given in Eq. (17). If p = 1 then v = 0 so Eq. (33) becomes:

Y e R M G M
1B+ 75)

If we fix Q' = 1, then Eq. (37) is reduced to:

My(s) = (1 - %) ’ (38)

This last expression is the MGF of a gamma function so that we can identify that the
small-scale fluctuations, Y, are governed by a gamma distribution. As the behavior of
large-scale fluctuations, X were approximated to follow a gamma distribution, then the
unconditional pdf for the irradiance is obtained by calculating the mixture of these two
gamma distributions in the same form as indicated in Eq. (12). Then, the gamma-gamma
model presented in (Al-Habash et al., 2001) is also included in our M model by, first, canceling
the Ug component, i.e., the energy which is scattered to the receiver by off-axis eddies; and,
secondly, normalizing the Q) component at 1. In this particular case, « represents the effective
number of large-scale cells of the scattering process and  similarly represents the effective
number of small-scale effects, in the same form as was explained in (Al-Habash et al., 2001).

4.3.3 Gamma-Rician model approximating to lognormal-Rician (LR) model

Finally, and again returning to our original model given in Egs. (20) and (21) and in Egs. (33)
and (34), we can approximate our M distribution to the LR model proposed in Eq. (9). For
this purpose, we only need to take f — oo; then, from the definition of e = (14 1/x)%, x — oo,
and from L'Hopital’s rule, the MGF of Y is given by:

!

o . -1 O's
=(1—9s) exp {1_75

7B )ﬁ(l (1—75)"! ] 39)

My(s) = lim ;
Y( ) B—so0 (%3-1-0 o —'ys>
1B+QY

according to Eq. (2.17) of Ref. (Simon & Alouini, 2005), where its associated pdf is, from Eq.

(20), rewritten as:
24/Q'y
)

!

fr () = —exp

v v

Equation (40) represents a Rice pdf (Abdietal., 2003). As the behavior of large-scale
fluctuations, X were approximated to follow a gamma distribution as indicated in Eq. (21),
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then the unconditional pdf for the irradiance, I, is obtained by calculating the mixture of these
two gamma distributions in the form:

A1) = [ e (113) fx(x)ce =

k
: k(q (41)
AR “”@’)/wxa-z-kex (1w
T T TP Ty = KT (k+ 1)k Jo P75y ’
where we have expanded the modified Bessel function, Iy(-), by its series representation:
pe =Y G EE s @)

& kT(k+p+1)

as indicated in (Andrews, 1998). Now, using again Eq. (3.471-9) of Ref. (Gradshteyn & Ryzhik,
2000), written in this chapter in Eq. (52), and substituting it into Eq. (41), we can derive:

k-1
1 at a) & D! (QI) 1\7 ol 43
ﬁm_?”@“ppﬁ>g%w—MNWW2(m) mk@¢7> w

On the other hand, Eq. (43) can be expressed as:

fi)=A4A i N <2 M) , (44)

where

(45)

C =Ty

Then, the distribution directly derived from our proposed M-distribution when g — co and
presented in Eq. (43) is a gamma-Rician model. Of course, this gamma-Rician distribution
is suggested to approximate the LR model detailed in (Churnside & Clifford, 1987), in which
the large-scale fluctuations, X, are assumed to follow a lognormal distribution. But, as was
discussed in Section 3.2., a lognormal distribution is well approximated by a gamma one
(Abdi et al., 2003; Al-Habash et al., 2001; Andrews & Phillips, 2008). So this gamma-Rician
approximation to the LR model will provide an excellent fit to experimental data avoiding the
impediments of the LR model; thus, the gamma-Rician approximation provides a closed-form
solution whereas the solution to the integral in the LR model is unknown and, moreover, its
integral form undergoes a poor convergence making the LR pdf cumbersome for numerical
calculations. In addition, the gamma-Rician approximation derived from our proposed M
distribution has directly identified the a parameter, related to the large-scale cells of the
scattering process, as in the gamma-gamma distribution (Abdi et al., 2003); whereas the other
parameters can be calculated by using the heuristic theory of Clifford et al., (Clifford et al.,
1974), Hill and Clifford, (Hill & Clifford, 1981) and Hill (Hill, 1982).
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Distribution model| Generation Distribution model Generation
p=0 p=0
Rice-Nakagami Var[|UL|] =0 Lognormal Var[|UL|] =0
v—0
Gamma p=0 K distribution Q=0andp=0
y=0 orf=1
Var[G] =0 Q=0
HK distribution p=0 Exponential distribution p=0
X=9 & — 00
Gamma-gamma  |p = 1, then ¢ = 0||Gamma-Rician distribution B —
distribution Q=1
Shadowed-Rician Var[|X|] =0
distribution

Table 1. List of existing distribution models for atmospheric optical communications and
generation by using the proposed M distribution model.

4.4 Summary

To conclude this section, all the approximations involved in deriving the different distribution
models that, until now, had been proposed in the bibliography are summarize in Table 1.
Finally, Fig. 2 displays, as an example, the K distribution and the gamma-gamma one as
special cases of the M distribution, showing the transition between them corresponding to
various values of the factor p representing the amount of scattering power coupled to the LOS
component. In such example, we have fixed ) = 0,2bg = 1 and ¢4 — ¢pp = 77/2.

1 1r
0=8 —p=0 o=17 —p=0
0 B=1 p=0.2 of =16 p=0.2
b ——p=0.4 1 —p=0.4
p=0.6 p=0.6
-2r —p=0.8 -2 —p=0.8
= —p=1 =) —p=1
= -3 P =3 P
=3 R o
S a4l K distribution S _4f K distribution
p=1
-5+ -5
-6+ -6r
—7F Gamma-gamma distribution —7r| Gamma-gamma
distribution
-8 . . . . . _8 . . ) . 1
o] 2 4 6 8 10 0 2 4 6 8 10
Intensity, / Intensity, /
(a) (b)

Fig. 2. Log-pdf of the irradiance (Subfigs. (a) and (b)) for different values of p, showing the
transition from a K distribution (o = 0) to a gamma-gamma distribution (o = 1) using the
proposed M distribution, in the case of strong irradiance fluctuations (a) and weak
irradiance fluctuations (b). In both figures, O = 0, 2by = 1 and ¢4 — ¢pp = 71/2.

5. Comparison with experimental plane wave and spherical wave data

Flatté et al. (Flatté et al., 1994) calculated the pdf from numerical simulations for a plane
wave propagated through homogeneous and isotropic atmospheric turbulence and compared
the results with several pdf models. On the other hand, Hill et al. (Hill & Frehlich, 1997)
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used numerical simulation of the propagation of a spherical wave through homogeneous and
isotropic turbulence that also led to pdf data for the log-irradiance fluctuations. In this section,
we compare our M distribution model with some of the published numerical simulation data
plots in (Flatté et al., 1994) and (Hill & Frehlich, 1997) of the log-irradiance pdf, covering a
range of conditions that extends from weak irradiance fluctuations far into the saturation
regime characterized by a Rytov variance, 012, of 25, where 012:1.23C%k7/ 611176 In that
expression, k=27/A is the optical wave number, A is the wavelength, C2 is the atmospheric
refractive-index structure parameter and L is the propagation path length between transmitter
and receiver. For values less than unity, the Rytov variance is the scintillation index
(normalized variance of irradiance) of a plane wave in the absence of inner scale effects and
for values greater than unity it is considered a measure of the strength of optical fluctuations.
The M distribution model employed in this section to fit with the experimental numerical
data is intentionally restricted to have its  parameter as a natural number in all cases. Hence,
the infinite summation included in the closed form expression obtained for the generalized
M distribution (Eq. (22)) can be avoided. This fact let us offer an even more evident
analytical tractability by directly employing Eq. (24), with a finite summation of B terms,
and maintaining an extremely high accuracy.

For the current case of a plane wave propagated through turbulent atmosphere the simulation
parameters that determine the physical situation are only Iy/Rr and 0%, as explained in
(Flatté et al., 1994), where [ is the inner scale of turbulence. The quantity R = /L/k is
the scale size of the Fresnel zone.

Thus, we plot in Figs. 3 (a)-(c) the predicted log-irradiance pdf associated with the M
distribution (black solid line) for comparison with some of the simulation data illustrated
in Figs. 4, 5 and 7 of (Flatté et al., 1994). The simulation pdf values are plotted as a function
of (InI[— < InI >)/0, as in (Flatté et al., 1994), where < InI > is the mean value of the

log-irradiance and ¢ = (len ;- the latter being the root mean square (rms) value of In I. The

simulation pdf’s were displayed in this fashion in the hope that it would reveal their salient
features. For sake of brevity, and as representative of typical atmospheric propagation, we
only use the inner scale value /[y = 0.5Rf so we can include the effect of [y in our results. We
also plot the gamma-gamma pdf (red dashed line) obtained in (Al-Habash et al., 2001) for the
sake of comparison. In Fig. 3 (a) we use a Rytov variance ¢? = 0.1 corresponding to weak
irradiance fluctuations, in Fig. 3 (b) we employ 07 = 2 corresponding to a regime of moderate
irradiance fluctuations whereas in Fig. 3 (c), (712 was established to 25 for a particular case of
strong irradiance fluctuations.

Values of the scaling parameter ¢ required in the plots for the M pdf are obtained from
Andrews’ development (Andrews et al., 2001) in the presence of inner scale. From such
development, the model for the refractive-index spectrum, ®,(x), used is the effective
atmospheric-spectrum defined by:

2. _11/3 K2 K11/3
q)n(K) = 0.033(:,11( f(K, IQ) EXP (—;%) + W ’ (46)

where « is the scalar spatial wave number. In Eq. (46), the inner-scale factor, f(xly), describes
the spectral bump and dissipation range at high wave numbers and, from (Andrews et al.,
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Fig. 3. The pdf of the scaled log-irradiance for a plane wave (Figures (a), (b) and (c)) and a
spherical wave (Figure (d)) in the case of: (a) weak irradiance fluctuations ((712 = 0.1 and

lo/ R = 0.5); (b) moderate irradiance fluctuations ((712 = 2and lp/Rp = 0.5); (c) strong
irradiance fluctuations ((712 = 25and lp/Rr = 0.5); and (d) strong irradiance fluctuations
(Ul%ymv = 5and ly/Rr = 0.5). The blue open circles represent simulation data, the dashed red
line is from the gamma-gamma pdf with « and p predicted in (Flatté et al., 1994) and the
solid black line is from our M distribution model. In all subfigures, ¢4 — ¢p = 7/2.

2001), it is defined by:

7/6
Fli,lo) =exp | — 1+1.802 (5) —0.254 (5) , =2 @)

K] K

2=

where it depends only on the dimensionless variable, xly. The limit xlj — 0 gives the
inertial-range formula for @, (k) because f(0) = 1. The quantity x; identifies the spatial wave
number associated with the inner scale, [ (m) of the optical turbulence. Finally, in Eq. (46),
Ky and xy represent cutoff spatial frequencies that eliminate mid-range scale size effects under
moderate-to-strong fluctuations. Thus, if we invoke the modified Rytov theory then

o= (712n[ =/In(c?+1), (48)
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where (TIZ is the scintillation index. From these expressions, ¢ is obtained and for its calculated
magnitude, the other scaling parameter, < InI >, required in the plots were directly extracted
from the Figure 1 in (Flatté etal., 1994). Now, with Eq. (48) we can calculate the set of
parameters (a, B,7,p, Q) with the constraint imposed by Eq. (27), and taking into account
that we had imposed B parameter will be a natural number. Such set of parameters were
obtained by running the function Isqcurvefit in MATLAB (Mathworks, 2011) in order to solve
this nonlinear data-fitting problem. The M pdf curves in Figs 3 (a)-(c) provide excellent fits
with the simulation data, even better than the provided by the gamma-gamma model, for all
conditions of turbulence, from weak irradiance fluctuations far into the saturation regime. In
particular, in Fig. 3 (a), (b) and (c) we use the simulation values 012 = 0.1,y = 0.5RE, 012 =2,
lp = 0.5Rf and (712 = 25, [p = 0.5Rfr and the predicted ¢ from Andrews’s work (Eq. (48))
is found to be ¢ = 0.3427, 0 = 0.9332 and ¢ = 1.0192. The obtained values from the M
distribution produce a “best fitting” curve with a calculated o of: ¢ = 0.3446, ¢ = 0.9562 and
o = 1.18, respectively. Only the value obtained for 0 = 25, Iy = 0.5RF is a bit higher than the
one predicted by Andrews’s work so his developments can be used as a good starting-point
to obtain the set of parameters of the M distribution.

Finally, in Fig. 3 (d) we have obtained a very good fitting to the simulation data for a
spherical wave in the case of strong irradiance fluctuations. Following Hill’s representation
(Hill & Frehlich, 1997), the simulation pdf data and pdf values predicted by the M
distribution are displayed as a function of (InI + 0.5¢2)/¢, where ¢ was defined in Eq.
(48). In this particular case of propagating a spherical wave, various additional parameters
are needed: first, the Rytov parameter, Uﬁytov, defined as the weak fluctuation scintillation

index in the presence of a finite inner scale. Thus: Uﬁytov:ﬁgﬁz(lo /RF), as indicated in

(Al-Habash et al., 2001; Andrews et al., 2001), where the quantity ,B% is the second additional
parameter used in the analysis of the numerical simulation data for a spherical wave.
Concretely, this latter parameter is the classic Rytov scintillation index of a spherical wave
in the limit of weak scintillation and a Kolmogorov spectrum, defined by: 3 = 0.4¢? =
0.496C2K7/61,11/6,

For the particular case displayed in Fig. 3 (d), the gamma-gamma pdf does not fit with the
simulation data and, even more, the Beckmann pdf did not lend itself directly to numerical
calculations and so are omitted. Nevertheless, the M pdf shows very good agreement with
the data once again, with the advantage of a simple functional form, emphasized by the fact
that its § parameter is a natural number, which leads to a closed-form representation.

6. Concluding remarks

In this chapter, a novel statistical model for atmospheric optical scintillation is presented.
Unlike other models, our proposal appears to be applicable for plane and spherical waves
under all conditions of turbulence from weak to super strong in the saturation regime.
The proposed model unifies in a closed-form expression the existing models suggested in
the bibliography for atmospheric optical communications. In addition to the mathematical
expressions and developments, we have introduced a different perturbational propagation
model, indicated in Fig. 1, that gives a physical sense to such existing models. Hence, the
received optical intensity is due to three different contributions: first, a LOS component,
second, a coupled-to-LOS scattering component, as a great novelty in the model, that includes
the fraction of power traveling very closed to the line of sight, and eventually suffering from
almost the same random refractive index variations than the LOS component; and third, the
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scattering component affected by refractive index fluctuations completely different to the
other two components. The first two components are governed by a gamma distribution
whereas the scattering component is depending on a circular Gaussian complex random
variable. All of them let us model the amplitude of the irradiance (small-scale fluctuations),
while the multiplicative perturbation that represents the large-scale fluctuations, X, and
depending of the log-amplitude scintillation, x, is approximated for a gamma distribution.
Therefore, we have derived some of the distribution models most frequently employed
in the bibliography by properly choosing the magnitudes of the parameters involving
the generalized M(G) model (or, directly, M, if B is a natural number). Then, the
Rice-Nakagami distribution is obtained when U becomes a constant random variable
while the coupled-to-LOS scattering is eliminated. As indicated in (Strohbehn, 1978), it is
straightforward to obtain a lognormal distribution from this model. If we now eliminate the
two components representing the scattering power, USC and Usc, and taking again Uj as a
constant, then the gamma model is derived.

To obtain the K distribution function, both the LOS component and the coupled-to-LOS
scattering component must be eliminated from the model. If the effective number of
discrete scatterers is unbounded then the K distribution tends to the negative exponential
distribution as the gamma distribution that governs the large-scale fluctuations approaches a
delta function.

To generate the gamma-gamma model, we must eliminate Ug Then, this model is obtained
when the LOS component and the coupled-to-LOS scattering component take part in the
propagation model, i.e., the scattering contribution is, in fact, connected to the line of sight.
To close the fourth section of this chapter, we have taken the lognormal-Rician pdf
as the model that provides the best fit to experimental data (Andrewsetal., 2001;
Churnside & Clifford, 1987). To derive such model from the M distribution presented in
this chapter, we have suggested the gamma-Rician pdf obtained in this current work as a
reasonable alternative to the LR pdf for a number of reasons. First, the gamma distribution
itself has often been proposed as an approximation to the lognormal model. It is desirable
to use the gamma distribution as an approximation to the lognormal pdf because of its
simple functional form, which leads to a closed-form representation of the gamma-Rician pdf
given by Eq. (43). This makes computations extremely easy in comparison with LR pdf.
Second, parameter value « is directly related to calculated values of large-scale scintillation
that depend only on values of atmospheric parameters. Third, and perhaps most important,
the cumulative distribution function (cdf) for the M!(G) and the M pdf’s can also be found
in closed form, as was shown in Egs. (28), (29). For practical purposes, it is the cdf that is of
greater interest than the pdf since the former is used to predict probabilities of detection and
fade in an optical communication or radar system.

Hence, knowing the physical and/or meteorological parameters of a particular link, it is at the
discretion of researchers to determine, to choose or to switch among the different statistical
natures offered by the closed-form analytical model presented in this work. So, in conclusion,
the M distribution model unifies most of the proposed statistical model for the irradiance
fluctuations derived in the bibliography,

Finally, we have made a number of comparisons with published plane wave and spherical
wave simulation data over a wide range of turbulence conditions (weak to strong) that
includes inner scale effects. The M distribution model is intentionally restricted to have
its B parameter as a natural number for the sake of a simpler analytical tractability. The M
distribution model is found to provide an excellent fit to the simulation data in all cases tested.
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Again, we must remark that all the results shown in section 5 are obtained with p being a
natural number so that the number of terms in the summation included in Eq. (24) is finite
(limited, precisely, by ). This feature provides a more remarkable analytical tractability to the
proposed M distribution that, in addition, was already written in a closed form expression.

7. Appendix A: proof of lemma 1

Starting with the pdf of the generalized distribution, M(©), written in Eq. (22), we can proceed
as follows: first, the confluent hypergeometric function of the first kind employed in Eq. (20)
can be expanded by its series representation:

1F1(a;62) =)

|z| < oo; (49)

as indicated in (Andrews, 1998), where (a); represents the Pochhammer symbol. Then, Eq.
(20) can be expressed as:

1 9B P v & (Bl v (Ql)kil
fw = (ata) oo () Bl nf i@

To obtain the unconditional generalized distribution, M), and from Egs. (21) and (50), we
can form:

00 a® p
fi(D) :/0 fy(I]x) fx (x)dx = %r(ﬂé) (yﬁvfﬂ’)

o (51)
2 B 1 (Q) ® a1k _r
kzzl [(k — 1)1 yk-1 (« +7,B)k71 /0 x exp ( " Dcx) dx,

having integrated term by term as the radius of convergence of Eq. (50) is infinity. Now, using
Eq. (3.471-9) of Ref. (Gradshteyn & Ryzhik, 2000),

/:o x'Texp (—g - vx) dx =2 (g) %KV (2\/[;—7) , (52)

and substituting it into Eq. (51), we obtain:

fI(I):l at ( 1B )ﬁi (Bk-1 1 (Q’>k71 Z(I)AZkKak (2 M>.

WB+Q ) S (k=) 1 (O 4 48)

Finally, Eq. (53) can be rewritten as:

fi) = a0 Y a1 K, (2,/“71 ) , (54)
k=1
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where .
A0 A 202 ( 1P )ﬁ.
YT () \ 7B+ Q) )
(G) A (Bt (an)?

(k=) =1( + )
as was already indicated in Egs. (22) and (23).

In reference of the M (a, B,,p, Q') distribution, where the p parameter represents a natural
number, the way to prove the lemma is something different. In this respect, we can obtain
the Laplace transform, L[fy (y);s], of the shadowed Rice single pdf, fy(y), written in
Eq. (20), in a direct way, with the help of Eq. (7) of Ref. (Abdietal., 2003), since the
moment generating function (MGF) and the Laplace transform of the pdf fy(y) are related

by M[fy(y); —s] = L[fy(y);s]:

I e ) L W A - I (%*Syil
qfY(y);S}:(vﬁJrQ') (ﬁ+0,+vs)ﬁ_7(75+9/) () 0
e

YB+Q
Now, let us consider the following Laplace-transform pair

T(v+1) (s —A)" (s —p) "L o ntt" MLV (A — )], Re(v) >n—1;  (57)

given in (Elderlyi, 1954), Eq. (4) in pp. 238, where the minor error in the sign of the
argument of the Laguerre polynomial found and corrected in (Paris, 2010) has already taken

. _ 1 ,___B —_B_ —_B_
into account. If we denote A = o 7ﬁ+0,,n—ﬁ land v = § —1, then
1\f 1 B\ by -t
— 1) s—l—f) (s+7,) s (B-1le w0 Ly | — |, 58
(Bt (s+ ha) 6= 1| 69

where L[] is the Laguerre polynomial of order n. If we substitute Eq. (58) into Eq. (56), then
the pdf of Y can be expressed as:
oY
Y } . (59)

o= (ptter) o (gl (f+ Q)

Now, to obtain the unconditional M distribution, from Egs. (21) and (59), we can form:

fil) = /(;oofy(l\x)fx(x)dx -
@ B reo
- ’rlfc(w) (vﬁfﬂ’) /o %EXP (_ V‘Bf_g’é)Lﬁfl

By expressing the Laguerre polynomial in a series,

Ly [x] = f (—1)"(’;) %I: (61)

!

%B_TQQ’ "ylx} x*Lexp (—ax) dx.

(60)
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as was shown in Eq. (8.970-1) of Ref. (Gradshteyn & Ryzhik, 2000), it follows that Eq. (60)
becomes

wl)t

1 B B Ny - 1 o 1\ 1
F(w);(ﬂ/ﬁ—i—ﬂ) k:l ( 1) (k—1)! (7'8—"()’7) : (62)

-/0 exp (_’Yﬁiﬂl i)x“’l’kexp(—wx) dx.

fr(l) =

Now, we denote by Gy the integral:

Gy = /oo x* 1k ex (— p_I_ zxx) dx (63)
o PAT B+ x '
Again, using Eq. (52), we can solve Gg:
:x2;k
B ack BI
Ge=2(—F"2——~| I7Ke k|2 | (64)
¢ (zx("rﬁJrQ) VB0
Employing this latter result and inserting it into Eq. (62), we find the pdf of I in the form:
;3 B
B\ stk apl
(1) = A<G>( ) al T 1K, | 2, -, (65)
fith Bra) & ’ 7B +Q

where, again, we can identify A(C) and ay parameters as the ones given by Eq. (25). O

8. Appendix B: proof of lemma 2

As indicated in Eq. (18), the observed irradiance, I, of our proposed propagation model can be
expressed as: I = XY, where the pdf of variables X and Y were written in Egs. (21) and (20),
respectively. Based on assumptions of statistical independence for the underlying random
processes, X and Y, then:

my (1) = E [Xk] E [Yk] = my (X) my (Y). (66)
From Eq. (2.23) of Ref. (Simon & Alouini, 2005), the moment of a
Nakagami-m pdf is given by:
I'(a+k)
X)=——+,
My ( ) T (DC) ok (67)

and, from Eq. (2.69) of Ref. (Simon & Alouini, 2005), the moment of the Rician-shadowed
distribution is given by:

‘B !
My (Y) = (,}/ﬁ%ﬁq) 7kr (k+1) 2F (k+1/ﬁ}1}%3?_0/> . (68)

When performing the product of Eq. (67) by Eq. (68), we finally obtain the centered moments
for the generalized distribution, M(G), as was written in Eq. (26).
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On the other hand, in reference to the M(«, B, 7, p, Q/) distribution, where the  parameter is
restricted to be a natural number for this particular case, we can proceed as follows: from Eq.
(59), we can obtain the moment of the Rician-shadowed distribution, given by:

m"m_l(vﬁﬂl) / vhe ( ﬁ?Q)Lﬁfl {m ‘

y
(69)
_1( P ‘”“(ﬁ—l)l o (_ Py )
= Gatta) 56 )5 e s o)
Now, from Eq. (3.381-4) of Ref. (Gradshteyn & Ryzhik, 2000),
/Ooo X' Lexp (—px)dx = %F (v), [Re(p) >0, Re(v) > 0], (70)

we can express Eq. (69) as:

1 B N\PPl 1\ 1 ol " T(k 1)
mk(Y):;(,Yﬁ,:_Q’) rz;t)(ﬁrl)r!(ry(fyﬁ+ﬂ')> (54—3;”1' (71)

TB+QY

Finally, when performing the product of Eq. (67) by Eq. (71), we certainly obtain Eq. (27). O

9. Appendix C: proof of lemma 3

For both cases, when I follows a generalized distribution, M (G), or directly an M distribution
if its B parameter is a natural number, then we need to solve the same integral. Thus, from Eq.
(6.592.2) of Ref. (Gradshteyn & Ryzhik, 2000),

/1x)‘(1 —x)P 1Ky (ay/x) dx =

0 14

T(v)T (y)F()H—l— 1y
(A Fl4pu— ﬂ/)

T(=v)T (A4 1+ Jv) T(p)
F(A+1+p+3v)

) 1 1 a?
15 A—l—l—iv;l—v,)x—i—l—i-y—iv;— +

2—1/ 1 —1/
4
(72)

2
NI e T 11:2(/\+1+%1/;1+v,)\+1+}4+%v;i),

4

Re(A) > -1+ %\Re (v)], Re(p)>0;

and by making the following change of variables: x’ = I - x, then dx’ = Irdx; and identifying

p=1,A=(a+k)/2,v=n—k wherea =2\/a/(vIr) and a = 2/aB/([yB+ Q]I) for the

M(C) and the M distribution, respectively; thus, the cdf associated with the M(C) and the
M distribution is readily found to be the expressions indicated in Egs. (28) and (29). O
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Numerical Simulation of Lasing Dynamics
in Choresteric Liquid Crystal Based
on ADE-FDTD Method

Tatsunosuke Matsui
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Japan

1. Introduction

Liquid crystals (LCs) are categorized in one class of condensed materials which show both
character of liquids and solids (crystals). Liquid-like fluidic character of LCs allows them to
show dynamic response to external stimuli such as electrical, optical and magnetic fields.
Anisotropic characters of LCs like crystals show determines the way how they respond to
external stimuli and also how they appear (de Gennes & Prost, 1995). These characteristics
are widely utilized in LC display devices. LCs are further categorized in subgroups (phases)
in terms of their degrees of order (orientational and positional) as shown in Fig. 1.

Wil Y iy
N N i S

Ll 1NN it S
PN iy EZZ

nematic smectic A smectic C cholesteric

4

Fig. 1. Schematics of several liquid crystal phases.

Cholesteric liquid crystal (CLC) is one of these sub-phases of LCs and the self-organized
formation of periodic helical structure is the most significant characters of this phase from
the viewpoint of device application. In case the pitch of the helix of CLCs is in the range of
the wavelength of visible light, they selectively reflect part of incident light in a certain
manner determined by their refractive index and the sense of helix. Figure 2 shows the
simulated transmission and reflection spectra of right-handed-circularly-polarized light
normally incident on CLC. Transmission/reflection band (stop band) can be recognized.
The central frequency and the bandwidth of the band are dependent on both refractive
indices and pitch of helix of CLC.
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Fig. 2. Transmission and reflection spectra simulated by Berreman’s 4 x 4 transfer matrix
method. Right-handed circularly polarized light is supposed to normally incident on 5 um-
thick CLC with 400 nm-pitch right-handed helix. Extraordinary and ordinary refractive
indices are 1.70 and 1.50, respectively. (Inset) schematic representation of selective reflection
by CLC with right-handed helix. As an incident light, linearly or randomly polarized and in
the photonic band wavelength is assumed.

So many studies have been made to utilize this so-called “selective reflection” character of
CLC to make the reflection type display, or in other words, electronic paper. Recently, CLCs
are also extensively studied as a photonic band gap (PBG) material or photonic crystal (PC).
In 1987, Yablonovitch (Yablonovitch, 1987) and John (John, 1987) put forward the basic
concept of PBG and since then so many studies have been carried out. Electromagnetic (EM)
wave (photons) propagating in PCs composed of periodic stacking of dielectric materials
with different dielectric permittivity behaves just like de Broglie wave (electrons) travelling
in periodic Coulomb potential in crystals. Long dwell time of photon at PBG edge energy
allows strong light-matter interaction and low threshold lasing may be obtained in such
PBG system with optical gain introduced (Dowling et al, 1994). Introducing defect states in
PC can induce photon localization in PC (Joannopoulos et al., 1995).

Periodic helical structure of CLC can also work as PBG material. In 1998, Kopp and his
coworkers succeeded in obtaining band-edge lasing from dye-doped CLC (Kopp et al.,
1998). Since their pioneering work, numerous studies have been carried out from the
viewpoint of academic interest and technical applications (Coles & Morris, 2010). The
introduction of various types of defects has also been attempted in CLC as schematically
summarized in Fig. 3. Yang and his coworkers showed, based on numerical analysis, that
introduction of isotropic thin layer as a defect in the middle of CLC layer (Fig. 3 (a)) creates
the defect state (narrow transmission band) in the stop band, which can be tuned via
altering thickness or refractive index of the defect layer (Yang et al., 1999). Kopp and Genack
have numerically demonstrated that twist-defect, discontinuous phase shift of the helical
twist of CLC molecules (Fig. 3 (b)), could indeed function as a defect (Kopp & Genack, 2002).
This type of defect is unique in CLC with optical anisotropy. Lasing from twist-defect has
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been experimentally attained utilizing photopolymerized CLC polymer films (Ozaki et al.,
2003; Schmidtke et al., 2003). It has been also shown that introducing defect can contribute to
reduce lasing threshold. Other types of defects have also been introduced. It has been
numerically shown that local modulation of helical pitch of CLC as schematically shown in
Fig. 3 (c) can also introduce defect states in the stop band (Matsui et al., 2004). Multi-layer of
CLCs with different helical pitch as shown in Fig. 3 (d) has been experimentally realized,
which have been successful to achieve reduced lasing threshold (Ozaki et al., 2006;
Takanishi et al., 2007).

- - -t |||||||w'.unulllluv.u|||||||||n'|||||n- -4

(a) Isotropic defect (b) twisf defect

00 -oon 000 s (o] (e ]

(c) gradient pitch (d) multi-layer

Fig. 3. Schematic representations of proposed defects in CLC PCs. (a) isotropic defect (b)
twist defect (c) locally modulated pitch (d) multi-layer system.

Refining device architecture may realize further lowering of the lasing threshold, which
motivated us to develop numerical simulation technique for the development of the more
efficient laser device architectures. We have recently reported on numerical simulation of
lasing dynamics in CLCs (Matsui & Kitaguchi, 2010). We have employed an auxiliary
differential equation finite-difference time-domain (ADE-FDTD) method, which was first
applied to the analysis of random lasing in one-dimensional (1D) random system (Jiang &
Soukoulis, 2000). We have successfully reproduced circularly-polarized lasing in CLC at the
energy of the edge of the stop band. Moreover, as will be discussed later, we have also
shown that our computational scheme can also be utilized to search for more efficient device
architecture with reduced lasing threshold. Here we will summarize the computational
procedure of ADE-FDTD method for the analysis of lasing dynamics in CLC and show that
this technique is quite useful for the analysis of EM field dynamics in and out of CLC laser
cavity under lasing condition, which might contribute to the deep understanding of the
underlying physical mechanism of lasing dynamics in CLC.

2. Numerical simulations

In this section, numerical simulation techniques employed in this study (1) ADE-FDTD
method for the analysis of lasing dynamics and (2) Berreman'’s 4 x 4 transfer matrix method for
the analysis of transmission and reflection spectra are summarized. As will be discussed, ADE-
FDTD approach enables us to analyze lasing dynamics in CLC from various viewpoints such
as time-dependent EM fields, Fourier-transformed emission spectra and snapshots of spatial-
distributions of EM fields. Berreman’s 4 X 4 transfer matrix method is traditionally employed
to simulate transmission and reflection spectra in rather simpler way.
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2.1 ADE-FDTD based numerical simulation of lasing dynamics

In this subsection, overview of ADE-FDTD approaches for the analysis of lasing dynamics in
various types of micro- and nano-laser systems made so far will be given first, and then
detailed numerical procedure will be given.

2.1.1 Overview of ADE-FDTD approach for the analysis of lasing dynamics in micro-
and nano-photonics systems

FDTD has been widely utilized to numerically simulate the propagation and/or localization
of EM waves in micro- and nano-photonic media (Taflove & Hagness, 2005). In order to
investigate lasing dynamics, ADE-FDTD approaches have also been developed, in which the
FDTD method is usually coupled with the rate equation in a four-level energy structure and
the equation of motion of polarization (Nagra & York, 1998) as schematically shown in
Fig. 4. As discussed above, Jiang and Soukoulis have employed ADE-FDTD method for the
analysis of random lasing in 1D random system (Jiang & Soukoulis, 2000). Numerous
groups have followed them to investigate lasing dynamics in various kinds of laser cavities
such as 2D random media (Vanneste & Sebbah, 2001), PCs (Bermel et al.,, 2006, Shi
& Prather, 2007), and distributed Bragg reflectors (Chang & Taflove, 2004; Redding et
al., 2008).
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, . . >
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Fig. 4. Schematic representation of ADE-FDTD simulation scheme.

2.1.2 ADE-FDTD method for the analysis of lasing dynamics in CLCs
Here numerical procedures for the ADE-FDTD analysis of lasing dynamics will be given.
Here we deal with a 1D system, where the time-dependent EM field propagating along the
z-axis is simulated using Yee's FDTD algorithm (Yee, 1966) to solve the following Maxwell's
equations:

oH(z,t)

VXE(2,t) =t — 1)

8E(z,t)+aP(z,t)
ot ot

VxH(z,t) = ge(z)
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where & and 4 are the dielectric permittivity and the magnetic permeability in vacuum,
respectively. &z) is dielectric permittivity of the medium and should be tensor for LCs and
will be given later. P(z, t) is the polarization density, which provides a gain mechanism in
the laser system. On the basis of the classical electron oscillator (Lorentz) model, one can
obtain the following equation of motion of P(z, f) in the presence of an electric field

dzP(z,t)
dt*

dP(z,t) =, 7, €&
P(z,t)="L—AN(z,t)E(z,t
o aEp (2 =2 AN (2 (e o

+Aw,

where Aay = 1/ 71 + 2/T> is the full width at half-maximum (FWHM) linewidth of the
atomic transition. T> is the mean time between dephasing events and @y (= 2nc/ ) is the
central frequency of emission. AN(z, t) (= Ni(z, t) - Na(z, t)) is the difference between electron
numbers at levels 1 and 2 (Fig. 4), % =1/ 71 and ¥ = (e2/m)[ a2/ (6menc?)] is the classical rate,
e is the electron charge, m is the electron mass and c is the speed of light in vacuum.

The electron numbers at each energy level, No(z, f), Ni(z, t), Na(z, t) and Ni(z, t) obey the
following rate equations.

dN ,t N /t
7361(: )=P,N0(z,t)—73(z ) @)
732
sz(z,t):NS(z,t)_‘_iE(Z t).dP(z,t)_Nz(z,t) o
dt Ty, ha, dt Ty

ANy (z,t) _Ny(zt) 1

E(zt)- -
dt Ty ha, (z1) dt Ty ©)
dNy(z,t) _ N, (z,t) _PNy(21) "
dt 10 rro

where 7, 71, and 7o, are the lifetimes at each energy levels, and P; is the pumping rate of
electrons from ground state (level 0) to upper energy level (level 3) and is a controlled
variable that should be tuned by the pumping intensity in the real experiment. By coupling
these equations (1) - (7), numerical simulation of lasing dynamics can be made as
schematically shown in Fig. 4. Flow chart of ADE-FDTD algorithm for the analysis of lasing
dynamics is summarized in Fig. 5.

In order to deal with anisotropic medium like LC, dielectric permittivity should be
represented as tensor. Assuming that LC molecules are uniaxial with optical major axis
(director) along y-axis and that extraordinary and ordinary refractive indices of LCs are #.
and n,, respectively, then the dielectric tensor of LCs should be represented as

£ (2) &y(2) €.(2) n 0 0
&(z)= eyx(z) eyy(z) 5yz(Z) :R[—Q(z)] 0 nez 0 R[Q(z)] @)
£,.(2) ezy(z) £,(z) 0 0 n?
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where R[#z)] is a rotation matrix about the z-axis and should be expressed as follows,

cosf(z) -sinB(z) 0
R[6(z)]=|sinf(z) cosf(z) O ©)
0 0 1

where @(2) is the rotated angle from y-axis. By changing éz) gradually as a linear function of
z, modeling CLC with a helix can be made. Introduction of various types defects as
summarized in Fig. 3 can be easily made by modulating this 6(z) appropriately.

In order to excite the system, a short seed pulse should be launched. E, and E, fields are
monitored at a point in the glass until the system reaches a steady state. By Fourier-
transforming time domain signals, emission spectra can be analyzed in frequency domain.

~ Description of the system ~
&(2)
~ Initialization of the variables ~

Ex(2) = Ey(z) =P (7)= Py(Z) =0, Hx(z)= Hy(Z) =0
Ni(2) = Na(2) = N3(2) = 0, No(2) = Neotal

Update polarizarion P(z, t)

l

Update electric field E(z, t)

l

Update electron densities No(z, t), Ni(z, t), Na(z, t), N3(z, t)

|

Update magnetic field H(z, t)

No l

l Yes

End

Fig. 5. Flow chart of ADE-FDTD algorithm for the analysis of lasing dynamics.

2.2 Berreman’s 4 x 4 matrix for the analysis of transmission and reflection

spectra of CLCs

Berreman’s 4 x 4 transfer matrix has been widely utilized for the numerical analyses of the
optical transmission and reflection spectra in CLC with helical structure (Berreman, 1970).
EM fields propagating along the z-axis with frequency ware given by
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where ¥(z) = [Ex(z) ,Hy(2) ,Ey(2) ,Hx(2)]T and D(z) is a derivative propagation matrix which
should be expressed as follows,

ek 1 (&Y (% |
=0 Temle) e ’
) e@d o ElE)e ()
D(z)= w(2) £,.(z) £.(z) @ xy( )= £..(z) 0 (11)
0 0 0 -1
e ala (aV_ o e(0e()
e.(2) w(?) e.(2) [wj wl2) e.(2) 0_

where c is the speed of light in vacuum, k and @ are wave number and frequency of light,
respectively. &; (i, j = x, y or z) are dielectric permittivity of LC.

3. Results and discussion

In this chapter, our results will be given. In Fig. 6, one of the analyzed CLC laser system
with twist defect is schematically represented as an example. A CLC layer is sandwiched
between two glass substrates. Physical parameters used in our simulation such as thickness
of CLC tcrLc and glass substrates f,, extraordinary and ordinary refractive indices of LCs e,
1o, refractive index of the glass substrate ng, the helical pitch of CLC p are summarized in
Table. 1.

twist defgct mode

PML : PML

observation
point

y z Pumping

Fig. 6. Schematic representation of CLC laser cavity system with twist-defect at the middle
of CLC layer.
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Here we assume that a gain material with a four-level energy structure is introduced in the
CLC. The lifetimes at each energy levels, % 71, and 7o, are chosen to be similar to those of
laser dyes such as coumarine or rhodamine. The total electron density at each point Niotal =
No(z, t) + Ni(z, t) + Na(z, f) + N3(z, t) should be a constant, and initially, all of them are
assumed to be at the ground state, namely, No(z, 0) = Niotal and Ni(z, 0) = Na(z, 0) = Na(z, 0) =
0. These values are also given in Table. 1.

In order to model an open system, appropriate absorbing boundary conditions should be
employed. We have employed perfectly matched layer (PML) (Berenger, 1994). The space
increment Ax and the time increment At are chosen to be 10 nm, 0.02 fs, respectively.

thickness of CLC: tcic 20 um
thickness of glass substrates: t; 5um
extraordinary refractive index of LCs: ne 1.70
ordinary refractive index of LCs: 1, 1.50
refractive index of the glass substrate: ng 1.50
helical pitch of CLC: p 400 nm
central wavelength of oscillation of Lorentz oscillator: A, 600 nm
lifetime at energy level 3: 73, 1.0x10-13 s
lifetime at energy level 2: 7 1.0x109 s
lifetime at energy level 1: 7o 1.0x1011 s
total electron density: Niotal 5.5x6.02x102

Table 1. Physical parameters of materials and dimensions of device of our model

3.1 Lasing dynamics

In Fig. 7, transient responses of electric fields and Fourier-transformed emission spectrum
for the case without any defect are summarized. In Fig. 7 (a), transient responses of E, and
E, fields monitored at a point in glass are shown. The pumping rate (P, = 1.0x1010 s1) is
well above the threshold for the lasing. After a short time (~ 3 ps), rapid evolution of both
E. and E, fields are observed, and after several oscillations, they reach a steady state. In
Fig. 7 (b), the steady-state responses of E, and E, fields are shown. A sinusoidal response,
which might be due to sharp (monochromatic) lasing emission, is observed. A quarter-
wavelength phase shift between E; and E, field components can also be recognized. This
implies that lasing emission is circularly polarized and this reproduces experimentally
observed results well.

Time-windowed time-domain steady-state responses are Fourier-transformed for the
evaluation of the power spectrum of the emission. In Fig. 7 (c), the emission spectrum and
the transmission spectrum are summarized. A sharp lasing peak appears above the
threshold pumping at 600 nm which corresponds to the higher energy edge of the stop
band. In Fig. 7 (d), the emission intensity at the peak wavelength (4, = 600 nm) is shown as a
function of pumping rate P;. The threshold pumping rate for lasing can be identified. As
discussed above, this can be utilized to pursue the more efficient CLC laser device with
reduced lasing threshold.
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Fig.7. (a) Transient responses of Ex and Ey field components observed at the glass. Pumping
rate Pr is 1.0x10%0 s-1. (b) Steady-state response at around 10 ps. (c) Fourier-transformed
emission spectrum and transmittance of CLC with 400 nm helical pitch. (d) Emission
intensity at the lasing peak wavelength (A, = 600 nm) as a function of pumping rate P;.

3.2 Field distribution

ADE-FDTD scheme is also suitable to visualize time-dependent spatial distribution of EM
fields. This might offer further understanding of underlying physics of CLC lasers. Fig. 8 (a)
shows a snapshot of field distribution of E, and E, field components under lasing condition
(Pr=1.0x100 51 and at 10 ps). As can be seen, both E, and E, fields have higher amplitude in
the middle of CLC layer, which implies that EM fields are more strongly confined in the
middle part of CLC. In our model no gain was introduced in glass, however, both E, and E,
fields can be seen and they have almost the same amplitude (envelope) in the whole range
in the glass. They might be attributed to the laser emission emitted from CLC laser cavity.

In Fig. 8 (b), magnified snapshots of E; and E, fields in the glass (from 2.0 to 2.6 um) at
different timings around 10 ps are shown. It can be recognized that both E, and E, fields are
propagating towards left, and also there is a quarter-wavelength phase shift between E, and
E, field oscillations. These facts clearly indicate that a circularly polarized lasing emission is
obtained from CLC laser cavity. On the other hand, time-dependent magnified snapshots of
E, and E, fields in the CLC (from 15.0 to 15.6 um) show different characteristics as shown in
Fig. 8 (c). Both E, and E, fields do not propagate and they form a standing wave. This also
manifests that CLC is working as a distributed feedback laser cavity. There is also a quarter-
wavelength shift between E, and E, fields, which shows that a standing wave in CLC laser
cavity is also circularly polarized and this might explain why circularly polarized lasing is
achieved in CLC lasers. In Fig. 8 (d), the angle of oscillation of electric field in the x-y plane
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Fig. 8. (a) Spatial distribution of E; and E, field components in CLC and glass at 10 ps.
Pumping rate P; is 1.0x10%0 s-1. Time-dependent spatial distribution of E, and E, field
components in (b) glass and (c) CLC at around 10 ps. (d) the angle of oscillation of electric
field in x-y plane ¢ as function of time. Inset: the definition of ¢.

@z, t) is shown as function of time at a point in glass (2.0 um) and in CLC (15.0 um). The
definition of the angle ¢(z, t) is schematically shown in the inset of Fig. 8 (d) and can be
deduced as follows.

E (z,
¢(z,t)=arctan{EyEZ :;} (12)

In CLC, the angle ¢(z = 15.0 um, t) does not change at all, which agrees well with the fact
that electric field forms a standing wave in CLC. Moreover, it can also be shown that the
angle is perpendicular to the director of liquid crystal molecules in the case lasing occurs at
the higher edge of the stop band (data is not shown). On the other hand, the angle ¢(z = 2.0
um, f) changes linearly with time, which show the angle ¢ rotates at a same rate and the
value of this rate evaluated from the slope of the plot is roughly equal to the central
frequency of lasing emission ax. This also manifests that electric fields observed in glass is
lasing emission emitted from CLC laser cavity and this is circularly polarized.

3.3 Twist-defect-mode-lasing

As discussed above, introduction of various types of defects have been proposed and tested.
One of these defects, twist-defect (Fig. 3 (b)), is analyzed here. Most of the conditions for the
simulation are kept the same except the thickness of CLC is 10 um here. In Fig. 9 (a)
transmission and reflection spectra analyzed by Berreman’s 4 x 4 transfer matrix are shown.
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Fig. 9. (a) Transmission and reflection spectra simulated by 4 x 4 matrix method. Right-
handed circularly polarized light is supposed to normally incident on 10 pm-thick CLC with
400 nm-pitch right-handed helix and with a twist-defect in the middle. Extraordinary and
ordinary refractive indices are 1.70 and 1.50, respectively. (b) Fourier-transformed emission
spectra at various pumping rates. Pumping rates P, are 1.0x108 s-1, 1.0x10%0 s-1, 1.0x1012 s-1
from bottom to top. (c) Spatial distribution of E, and E, field components in CLC with twist-
defect in the middle and glass.

It can be recognized that a sharp transmission/reflection peak appears in the middle of the
stop band at around 640 nm. In Fig. 9 (b) Fourier-transformed emission spectra at various
pumping rates are summarized. In this case, the central frequency of Lorentz oscillator ax
was set to be 2nc/ (4. = 620 nm) such that band edge lasing (~ 600 nm) and twist-defect-
mode lasing (~ 640 nm) can be assumed under similar pumping conditions with similar
gain. Above certain threshold pumping around P: = 1.0x1010 s-1, sharp lasing peak appears
at around 640 nm, which corresponds to the energy of introduced twist-defect state. When
pumping rate is increased further, another lasing peak appears at around 600 nm which
corresponds to higher energy edge of the stop band (data is not shown). These results imply
that lasing at twist-defect-mode can be obtained with lowered threshold than that at the
edge of the stopband and also shows that the introduction of defect is quite effective for the
reduction of lasing threshold.

Fig. 9 (c) shows a snapshot of field distribution of E, and E, field components under lasing
condition. Field distribution (envelope) in CLC with twist-defect is quite different from that
without a defect (Fig. 8 (a)). Electric fields are strongly localized at the site where the twist-
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defect is introduced. This strong confinement of EM fields might enable strong light-matter
interaction and result in lower lasing threshold.

4. Conclusions

In conclusion, we numerically investigated the lasing dynamics in CLC as a 1D chiral PBG
material by the ADE-FDTD approach which couples FDTD with ADEs such as the rate
equation in a four-level energy structure and the equation of motion of Lorentz oscillator.
This technique enables us to analyze lasing dynamics from various viewpoints such as time-
dependent emission dynamics, Fourier-transformed emission spectra and time-dependent
field distributions. Band edge circularly polarized lasing was successfully reproduced above
threshold pumping. Through the analysis of time-dependent EM field distributions, it is
shown that circularly polarized lasing emission is obtained from CLC laser cavity. It is also
shown that standing wave with quarter-wavelength phase shift between orthogonal field
components is obtained in CLC, which might explain CLC works as distributed feedback
laser cavity for circularly polarized lasing emission. With the introduction of twist-defect,
lasing emission at defect-mode energy with lower lasing threshold was obtained. It is also
shown that the field distribution in CLC with twist-defect is introduced is quite different
from that without any defect. ADE-FDTD approach might be utilized to find more efficient
device architecture for obtaining a lower lasing threshold.
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1. Introduction

Zernike polynomials (ZPs) form a complete orthogonal basis on a circle of unit radius. This
is useful in optics, since a great majority of lenses and optical instruments have circular
shape and/or circular pupil. The ZP expansion is typically used to describe either optical
surfaces or distances between surfaces, such as optical path differences (OPD), wavefront
phase or wave aberration. Therefore, applications include optical computing, design and
optimization of optical elements, optical testing (Navarro & Moreno-Barriuso, 1999),
wavefront sensing (Noll, 1978)(Cubalchini, 1979), adaptive optics (Alda & Boreman, 1993),
wavefront shaping (Love, 1997) (Vargas-Martin et al, 1998), interferometry (Kim,
1982)(Fisher et al., 1993)(van Brug, 1997)(Chen & Dong, 2002), surface metrology
topography (Nam & Rubinstein, 2008), corneal topography (Schwiegerling et al.,
1995)(Fazekas et al., 2009), atmospheric optics (Noll, 1977) (Roggemann, 1996), etc. This brief
overview shows that the modal description provided by ZPs was highly successful in a
wide variety of applications. In fact, ZPs are embedded in many technologies such as optical
design software, large telescopes, ophthalmology, communications, etc.

The modal representation of a function (wavefront, OPD, surface, etc.) over a circle in terms
of ZPs is:

W(p,0) =2 ci'Z (p,0) O

where ¢} are the coefficients of the expansion; (p,0) are polar coordinates with origin at
the pupil centre. The radial coordinate is normalized to the physical (real) radius of the
circlep=r/R, since the ZPs are orthogonal only within a circle of unit radius. The
usefulness and importance of ZPs is associated to two main properties, completeness and
orthogonality (Mahajan, 2007). However, in real applications one is constrained to work
with discrete (sampled) arrays of data rather than with continuous functions, and then the
discrete (sampled) Zernike polynomials loose these two essential properties, namely
orthogonality and completeness (Wang & Silva, 1980)(Navarro et al., 2009). For this reason
different authors have proposed alternative basis functions, such as Fourier series, splines or
Chebyshev-polynomials (Ares & Royo, 2006)(Soumelidis, 2005).
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The estimation of the coefficients of the Zernike expansion is still an open problem, which
has attracted the interest of many researchers. In particular, different studies had shown the
decisive influence of the type of sampling pattern on the quality of the reconstructions
(Voitsekhovich, 2001)(Diaz-Santana et al., 2005)(Pap & Shipp, 2005). For instance, orthogonal
discrete ZPs were introduced for wavefront fitting (Malacara et al., 1990) (Fisher et al., 1993);
random patterns provided enhanced performance (Soloviev & Vdovin, 2005); and Albrecht
grids have the property of keeping the orthoganilty of ZPs (Rios et al., 1997). Nevertheless,
apart of the lack of completeness and orthogonality of discrete ZPs, there is an additional
issue, which affect several important applications, such as optical design (ray tracing),
wavefront sensing and surface metrology. In all these applications the modal description of
the wavefront is not reconstructed from wavefront samples but from (measure or
computation of) wavefront slopes (Southwell, 1980) (Bard, 2003) (Liang et al., 1994)
(Solomon, 1998) (Primot, 2003). The third problem arises because in order to reconstruct the
wavefront, one fit the data (slopes) to the slopes, i.e. partial derivatives, of ZPs, and these
partial derivatives are not orthogonal even for the ideal continuous polynomials.

In summary, there are three different problems that one has to face when implementing
practical applications (either numerical or experimental): (1) Lack of completeness of ZPs;
(2) Lack of orthogonality of ZPs and (3) Lack of orthogonality of ZP derivatives. To
overcome these limitations, the general standard procedure is to apply a strong
oversampling (redundancy) and reconstruct the wavefront by standard least squares fit.
The advantage of a strong redundancy is to minimize the reconstruction noise, but it has
two main disadvantages. When one reconstructs fewer modes than measures, then there is a
high probability of having cross coupling and aliasing in the modal wavefront estimation
(Herrmann, 1981). In addition, oversampling necesarily implies that the wavefront
reconstruction is not invertible. This means that it is not possible to recover the initial
measures (or samples) from the reconstructed wavefront. This complicates or can even
preclude some applications involving iterative processes, inverse problems, etc.

Our goal in this work was to study these three problems and provide practical solutions,
which are tested and validated through realistic numerical simulations. Our approach was
to start studying and eventually solve the problem of completeness (both for ZPs and ZPs
derivatives), because if we can guarantee completeness, then it is straightforward to apply
Gram-Schmidt (or related method) to obtain an orthonormal basis over the sampled circular
pupil (Upton et al., 2004). Furthermore, completeness in the discrete domain, means that
Eq.1 can be expressed as a matrix-vector product, where the matrix is square and has an
inverse. This means that we have the same number of samples and coefficients and that we
should be able to pass one set to the other and viceversa. However, orthogonality becomes
important, especially for large matrices, because in that case the inverse transform (matrix)
is equal to its transpose, which guarantees numerical stability of matrix inversion. Our
approach to guarantee completeness is based on the intuitive idea of avoiding any
redundancy in the sampling pattern. This means that the coordinates of the sampling points
never repeat: that is 6,#6, and p; #p, Vi,k in the sampling grid. We confirmed
empirically, with different sampling patterns (regular, random and randomly perturbed
regular), that these non-redundant sampling schemes keep completeness of both ZPs and
ZP derivatives. This permits to work with invertible square matrices, which can be
orthogonalized through the classic QR factorization. In the following Sections, we first
overview the basic theory (Section 2); then we obtain the orthogonal modes for both the
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discrete Zernike and the Zernike derivatives transforms for different sampling patterns
(Section 3); in Section 4 we describe the implementation and results of realistic computer
simulations; and the main conclusions are given in Section 5.

2. Theory

Zernike polynomials are separable into radial polynomial and an angular frequency.
According to the ANSI Z80.28 standard the general expression is:

2 ,6):{ N,',”Rll”‘(p)cosmﬁ for mZO}

1 || . @
-N'R)"(p)sinmb for m<0
where the radial polynomial is:
(n—m))/2 1) |

R‘m‘ - (_ ) (1’1 —S). n-2s 3
v (P) SZ:(:) s![O.S(nHm‘)—s]![O.S(n—‘m‘)—s]!p ®

and orthonormality is guaranteed by the normalization factor N:
N = 2(n+1) @

1+93,,0

where 6, is the Kronecker delta function. The radial order # is integer positive, and the
angular frequency m can only take values -n, -n + 2, -n + 4, .. n. For practical
implementation, sampled signals and discrete polynomials, we shall use vector-matrix
formulation, and hence it is useful to merge n and m indexes into a single one
j=(n(n+2)+m)/2 (ANSIZ80.28 standard).

2.1 Critical sampling and invertible transform

The classical problem to represent a function as an expansion such as that of Eq. 1 is to
obtain the coefficients c;' =c;. The orthogonality of ZPs implies that we can compute the
coefficients as the projections (inner product) of the function W on each basis function:

12n
= [ [ W(p,0)Zs (p,0)pd0dp ©)
00

but this expression can be hardly applied when we only have a discrete set of samples of IV,
and the discrete polynomials are not orthogonal.

The discrete version of Eq. 1 is w = Zc. Now, w is a column vector whose components are
the I samples of W(p,0); c is another column vector formed by | expansion coefficients
¢;=cy ; and Z is a matrix, Z; ;, whose columns are sampled Zernike polynomials. Matrix Z
is rectangular, but for a given sampling pattern, the number of coefficients (modes) has to be
less or equal to the number of samples (] < I). The case | = I corresponds to critical sampling.
To obtain the coefficients one can solve w = Zc¢ for ¢, but for doing that Z must have an

inverse so that one can apply ¢ = Z1w. The inverse Z-1 exists only if (1) it is square (critical
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sampling) and (2) its determinant Det(Z) # 0 . In other words the rank of this Ix] matrix has
to beRank(Z)=I1=]. As we will see below, Rank(Z)<Ifor most common sampling
patterns, and Z-1 does not exist. The standard way to overcome this problem is to apply a
strong oversampling to the wavefront WV and estimate a number of coefficients much lower
than the number of samples (J<<I). Provided that, Rank(Z)> ], then the coefficients can be
estimated computing the Moore-Penrose pseudoinverse of Z:

c= (sz)f1 Z'w (6)

This is a standard (linear) least squares fit. The tilde means estimated, since the wavefront
expansion is approximated. This estimation is optimal under a least squares criterion
(minimum RMS error). However it may not be exact due to mode coupling and aliasing
(Herrmann, 1980) (Herrmann, 1981) and always requires a highly redundant sampling. As a
consequence, Eq. 6 is not invertible, in the sense that one recovers estimates w =Zc rather
than the true original samples w. In Section 3 we show that non redundant patterns keep
completeness of the ZPs basis, which permits to work with critical sampling, and guarantee
the existence of both direct and inverse transfoms:.

w=Zc and c¢=Z1w )

2.2 Critical sampling of Zernike polynomial derivatives

There is a variety of applications where the measurements (samples) are slopes or gradient
of the surface (surface metrology) or wavefront (numerical ray tracing or wavefront sensing)
(Wyant & Creath, 1992) (Welsh et al., 1995). In the last case, the original samples at
points (p;,0;), i = 1,... I are transverse aberrations, proportional to the wavefront slopes,
components of the wavefront gradient:

(x,9}) = /R YW (p,,0) ®

where R is the total pupil radius and {" is the focal length of the lens (or microlens array) of
the measuring instrument (Navarro & Moreno-Barriuso, 1999). To recover the wavefront W
one has to integrate the gradient, and to this end it is convenient to apply some expansion of
W in terms of some derivable basis functions. For circular pupils, Zernike polynomials (ZPs)
seem an appropriate basis even though ZP derivatives are not orthogonal. In terms of ZPs
derivatives, we can express the gradient of W as a column vector, and using the expansion
of Eq. 1 we arrive to the expression of a normalized i-th measure vector m;, formed by the
normalized measurements along the x and y axes:

N Loz
m, R/Uz o (%)
i i1 \Zy!
where Z},(j , Zi(j are the partial derivatives of the j-th ZP at point i. It is important to note

that we exclude the constant piston term j = 0 since the partial derivatives are zero.For the
complete set of samples in vector-matrix notation we obtain:

Z!
m—[ ,XJc—Dc (9Db)
Zy
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This expression m = Dc is similar to the discrete version of Eq. 1 (w = Zc) before, but now
the columns of matrix D are concatenated partial derivatives of ZPs. This means that D has
double 2I rows. As in the preceding Subsection, the usual strategy is to apply a strong
oversampling, | << I, and then compute the least squares solution, i.e. the pseudo inverse, so
that the coefficients are estimated as c¢= (DTD) D'm. Again, in case that we could
guarantee completeness, it would be possible to apply critical sampling, so that D is square |
= 2I; as before, completeness means that Det(D) # 0 or equivalently Rank(D)=2I=].

It is worth remarking that critical sampling in this case means to recover double number
of modes than sampling points, J=2I, simply applying ¢ = D-lm. This possibility is
plausible since we have two measures (two partial derivatives in m;) at each point,
provided that there is no redundancy (Navarro et al., 2011). This would be similar to the
Hermite interpolation, where one has the function and its first derivative at each point
and recovers J=2I coefficients. Regarding completeness, the intuitive hypothesis is that if
the original basis Z is complete, and able to represent any continuous (derivable) function
W within a circular support, then we would expect that the set formed by their derivatives
D should provide a complete representation for the derivatives (gradient) of W. As
shown in the next Section, this hypothesis was verified empirically for a variety of
families of non redundant sampling patterns.

2.3 Orthogonalization

As we said above, our main empirical finding was that different types of non redundant
sampling patterns on the circle keep completeness of both the discrete ZPs and discrete
(sampled) derivatives. However, orthogonality is lost in both cases after sampling. One
of the most important problems caused by the lack of orthogonality is a bad condition
number of matrix Z (or D), which makes the inversion (Z-1 or D-1) to be numerically instable
(Navarro et al., 2011) (Zou & Rolland, 2006). The consequence is noise amplification when
one tries to estimate the coefficients, using either ¢ = Z'w or ¢ = D-m. The condition
number (CN), ratio between the highest and lowest singular value of the matrix, is the main
metric for the expected numerical instability, and also provides an initial prediction of
the level of expected noise amplification when passing from the measures (samples) to
the coefficients. The ideal value is CN = 1 since then the noise amplification factor is 1 as
well; that is no amplification. Orthogonality implies that the inverse matrix equals its
transpose. As matrix transpose is a trivial transform, thus for orthogonal matrices CN =1. If
that is not the case, CN tends to increase with the size of the matrix. For the typical sizes
used in practical applications it can take huge values (from 102 up to 105 in the cases
analyzed in the next Section), which means that the numerical implementation with real
data will be ineffective.

The Gram-Schmidt orthogonalization (and further enhanced versions) method permits us to
decompose the initial matrix into a product Z = QR (also known as QR factorization), where
Q is the matrix formed with the new orthonormal basis vectors, so that Q' =Q7 ; and R is
an upper triangular matrix passing from the Q to the Z basis. (Of course we can apply D =
QuRq as well). If the initial matrix was square and Det(Z)#0 (complete basis), then we can
express both the Q direct and inverse transform (the Discrete Zernike Transform):

w=Qc, and ¢, = QTw (10a)
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and similarly for the Zernike derivatives:

m=Qucq and ¢; =Q4 'm (10b)

Nothe that Q and Qg are new basis, and the new coefficients will be different. To pass from
former to the new basis we simply apply R: ¢; =Rc and ¢q =R4crespectively. Also, we can
pass from Qg to Q: ¢4 = RdR_lcq and vice versa. This is a crucial point because the condition
number of matrix R is the same as that of the initial basis Z. If we want to recover the
original coefficients ¢, then we have to invert R: C=R_1Cq and then we will have the
deleterious effects of noise amplification again. In other words, orthogonalization makes
sense only if the new Q basis has a clear physical meaning and the coefficients of the
transform cq are useful to us. In the case of Z and Q, the physical meaning of R is to pass
from the continuous to the discrete domain. When we adopt the Q basis we are giving up
knowing the wavefront outside the sampling points. That is, we can recover the exact values
of the samples from the coefficients ¢q, but we can not interpolate between them. In order to
interpolate, to know the continuous wavefront, then we have to apply R-1 with the potential
danger of noise amplification. In other words, we get an important gain: an exact and fully
invertible transform, with a maximum number of coefficients (critical sampling), which in
turns minimizes the effects of spectral overlapping and avoids noise amplification. The cost
is the constraint to work within the discrete domain, without trying to reconstruct a
continuous version of the wavefront. This (somehow optional) cost is fully assumable in
most applications where the final interpolation is not necessary. In fact this is totally
equivalent to the discrete Fourier transform (DFF) in signal processing, where one always
work within the discrete domain.

In the case of the Zernike derivatives basis, the physical meaning of Rq is different because
now, that basis change implies two transforms: passing from the continuous to the discrete
domain, but also differentiating to pass from the wavefront to the derivatives. This means
that the range of applications of the Qg basis is lower. It can be highly useful to have a
complete orthogonal basis for spot diagrams, but Qg is not a particularly useful basis for
wavefront sensing or applications where the main goal is to integrate.

Finally, we want to remark that the DZT basis Q is going to change not only with the
number of samples I, but also with the sampling scheme. For each sampling scheme, we will
have a different Z matrix and hence a different basis change operator R and sampling-
distinctive direct Q and inverse QT discrete Zernike transform DZT.

3. Construction of orthogonal basis

In this Section we apply the above theory to construct the complete basis and to obtain
orthogonal modes.

3.1 Complete sampling patterns

Our starting point is to analyze the rank of matrix Z (and D) for different regular sampling
patterns chosen among the most used in the literature (redundant) and types of non
redundant patterns proposed here. The rank measures the dimension of the subspace
covered by the basis functions, so that the case Rank(Z)=I means that the basis is complete.
The rank was computed always for critical sampling (square matrix) and for different
numbers of sampling points.
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3.1.1 Non redundant sampling patterns: Random, perturbed and regular

Random patterns (i) were generated as follows. Each sampling point is obtained by adding a
random displacement to the coordinates of the previous sampling element. These
displacements have a Gaussian distribution with zero mean and standard deviation equal to
the diameter of the sampling element. Non-overlapping between samples and total
inclusion of the sampling element into the measured pupil were imposed. Several masks
were generated and compared in terms of the condition number of the Z matrix obtained for
each of them, in order to choose the best realization.

The perturbed regular sampling patterns (ii) were implemented by adding small random
Cartesian displacements (&,,¢,) to the sampling points of regular grids. These
perturbations have a Gaussian distribution with zero mean, and their magnitude is
determined by the standard deviation 6. We have performed simulations with perturbations
ranging from 108 to 102 in pupil radius (R) units. To be effective we found that ¢ has to be
equal or grater than 103 R.

Finally, we designed regular (deterministic) non redundant sampling patterns (iii). Regular
sampling patterns are commonly obtained by convolution of the function to be sampled
with a Dirac comb. Let us start with the angular coordinate. To sample the interval [0, 0,,,, ]
with I equally spaced samples, the interval will be 80 =6, /(I-1). Now, we could apply
a similar sampling to p. If the comb is 2D (2-dimensional) we obtain a pure polar sampling,
which is redundant in both coordinates. A way to avoid redundancy is to apply 1D Dirac
combs to both coordinates; or in other words to make p proportional to ¢ and set
Onax = 27N . In this way we obtain a rolled 1D pattern, which is a spiral with N¢ cycles
covering a circular area with radius p,,, « 6,,., - To completely avoid redundancy, we have
to be careful with the periodicity of the angular variable, i.e. we need to guarantee that the
number of samples per cycle NSPC =21/80 is non integer. The difference between polar
and spiral patterns is that the former is a purely 2-dimensional whereas the spiral is
obtained by rolling a 1D pattern. Despite their different nature, both can adequately cover a
circular domain. The linear spiral, however, has the problem that the density of samples per
unit of area is high at the centre and decreases towards the edge. One way to avoid that
problem is to use an array of spirals to form an helical pattern (Mayall & Vasilevskis, 1960).
Here, however, the goal was to avoid redundancy, and we implemented different spirals
controlling the density of samples. The general expression for the radial coordinate was
p(0)=X/6/6,,., , which ensures that p<1. For p = 2 we obtain the Fermat or parabolic
spiral, in which the density of samples is nearly constant when the angle is sampled
uniformly. We also tried other values of p. In particular for p = 4 the density of samples
shows a quadratic increase of density towards the periphery, which improves the
orthogonality, and hence the condition number for inverting the transform.

For the Fermat spiral, constant density of samples occurs, in a first approximation, when the
total number of cycles is proportional to the square root of the number of samples
N, z\/l/7 Usually N. is chosen to be integer, but in some cases this could result in a
redundant sampling. If that happens (see below) we add 1/2 to break periodicity: Thus, we

have different cases N, =int(«/I/7:) or N, =int(1ll Tt)+0.5 where “int” means nearest

integer. In terms of the number of cycles 80=2nN_/(I-1). By definition, the radial

coordinate p is never repeated, and with the additional condition that the sampling is not
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periodic in 2n (i.e. the number of samples per cycle is not integer,
NSPC =2n/80 =(I-1)/N, #i ), then we avoid any redundancy in both radial and angular

coordinates. The examples implemented here correspond to maximum orders of ZPs n =7
and n =12, and represent the two possible cases of N. integer or non integer. In the first case
we have | = [ =36; then N, =3, 806 =0.5386 radians and NSPC = 11.667. Since this is not an
integer number, the sampling is non redundant. In the second example, N=12and ] =] =
91. If we choose an integer value N. =5, 30 =0.349 but then we will have NSPC = 18 and the
sampling would be periodic in & i.e. redundant. We can avoid that redundancy by adding
0.5 cycles so that N. = 5.5, then 60 =0.384 radians and NSPC = 16.36.

Finally, the last sample of the spiral has to strictly meet the condition p; < 1 to avoid partial
occlusion of the marginal samples by the pupil. One possible criterion is to keep the area
covered by this last sample equal to the average. As an approximation, here we impose the
radial distance of the last sample to the pupil edge to be equal to half the width of the last
cycle: 1-p; =1/2(p;—p;_nspc); solving for p; =2/3+1/3p;_yspc; and in terms of N

p;=2/3+1/3/(N.-1)/N, . (In the examples p;_3, = 0.9388 for I = 36 and p,_o; = 0.9682
respectively.) Now, the sampling grid is fully determined by 6; =86/k +(i—1)36 with i= 1,

2,.I and p; =p;4/0;/8; . Therefore, given a maximum order N of Zernike polynomials, we

want as many samples as Zernike modes, I =]=1+N(N+3)/2 ; then assign a number of

cycles (first option N. integer when NSPC is non integer; or add 0.5 to avoid periodicity if
NSPC integer). Finally choose a value for k to have the spiral sampling completely determined.
The above computation of the number of cicles N. and last value of p corresponds to the
Fermat spiral, p =2, but the same analysis can be applied for different spirals. We found that
p =2 was optimal to get homogeneous density, but p =4 was optimal in terms of minimum
condition number.

Figure 1 shows some of the sampling patterns analyzed here, for the case of I = 91 samples
(order n = 12), hexagonal (H91), hexagonal perturbed (HR91), hexapolar (HP91), random
(R91), spiral (S91) and spiral with quadratic density (SQ91). The ranks obtained for the
different patterns are summarized in Table 1. Three (left) columns correspond to three
standard (redundant) patterns (square, hexagonal and hexapolar), and three (right) columns to
the non-redundant patterns proposed here (hexagonal perturbed, random and spirals). Only
random and spiral patterns permit to set an arbitrary number of samples which provides total
flexibility to match the number of samples to any (maximum) order n of Zernike polynomials.
This is the reason why some rows in Table 1 are incomplete. The 2D regular patterns
considered here are centred at the origin (i.e. they include the central sample) and they can
only match determined orders, except for the case n=7 (I=36), where we had to remove the
central sample, otherwise we had 37 samples. This Table shows that non-redundant patterns
(except for the case perturbed hexapolar not included in Table) provide maximum rank
(completeness), whereas regular 2D patterns yield lower ranks. Among them, square and
hexagonal seem equivalent, but the hexapolar shows the lowest value for 36 samples.

In summary, the completeness of sampled Zernike polynomial basis is strongly dependent
on sampling pattern. The above results support the relationship between redundancy, low
efficiency of sampling and lack of completeness. Taking into account the symmetry of ZPs
where radial and angular parts are separable, polar (or hexapolar) sampling schemes are
expected to have the highest redundancy in the Z matrix, which is confirmed by the lower
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values both in rank and condition number of Z. Non-polar sampling (square, hexagonal) has
an intermediate level of redundancy, which can be improved by introducing small
perturbations to the regular sampling grid. On the other hand either fully random or spiral
patterns seem to guarantee completeness. The later has the advantage of being deterministic
and regular. Nevertheless, completeness does not ensure an accurate inversion in practice.
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Fig. 1. Examples of sampling patterns with 91 points providing singular Z (hexagonal and
hexapolar) and invertible (hexagonal perturbed, random and spirals).

The same non redundant sampling patterns, which guarantee completeness of the ZPs,
namely random, perturbed regular, and spirals (especially Fermat and quadratic ones), do also
guarantee completeness of the D basis (Navarro et al., 2011). In other words, the 2 sampled
partial derivatives of ZPs form a complete basis for the set of measurements m. The size of the
matrix is 2Ix] with 2I = |. For the particular case of I = 91 and critical sampling, ] =182 and D is
a 182x182 square matrix. The rank was always maximum, 182 for this case and for all non-
redundant samplings. Surprisingly, the rank was much lower (by a factor of two
approximately) and always lower than I for the rest of redundant sampling patterns: for
example the rank was 89 < I for the hexagonal case. This suggests the possibility of
implementing wavefront sensing with critical sampling to recover 2] modes of the wavefront.

Square  Hexagonal Hexapolar Random Perturbed Spirals

=36 (n=7) 34 34 30 36 36 36
=91 (n=12) - 87 88 91 (H) 91 91
=120 (n=14) 112 - - 120 (Sq) 120 120

Table 1. Rank of matrix Z for different sampling schemes (rows) and number of samples
(columns). Square (Sq), Hexagonal (H).
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The main limitation is that the condition number of Z (and D) strongly increases with matrix
size. For I=36, CN is between 10° and 102 for the complete sampling patterns, and increases up
to 105 for S1, 104 for random and keeps above 102 for quadratic spiral S2, all the cases with
[=91. The high CN (obtained for the S1 and random sampling grids) mean that the estimation
of Z1 (or D1) could be highly noisy, getting worse in general as the number of samples
increases. In fact, when I is of the order of 102 or higher, matrix inversion will be numerically
instable, so that completeness alone is insufficient for effective practical implementation. In
this context, orthogonalization is the way to optimize CN and matrix inversion.

3.2 Orthogonal modes

In the next paragraph we analyze the resulting orthonormal basis functions after applying
the QR factorization. The Zernike modes are highly significant in optics since each mode
corresponds to a type of aberration: piston (n=0, m=0), tilt (n=1, m= £1), defocus (n=1, m=0),
and so on. Each mode corresponds to a Zernike polynomial defined on a continuous circle
of unit radius. Sampled polynomials do not form an orthogonal basis anymore, but if we
apply a complete (non redundant) critical sampling scheme and apply orthogonalization,
then the resulting columns of matrix Q will be the new Zernike modes in the discrete
domain (see figure 2).
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Fig. 2. a (left). Modes (m 2 0) of the DZT for different sampling schemes: random (R),
perturbed hexagonal (H) and spiral (S). The three upper rows correspond to I = 36 samples
and the three lower rows to I = 91. Bottom row represents the continuous (I = w) Zernike
modes.
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Fig. 2. b (right).

3.2.1 Discrete wavefront modes

Figure 2 compares the resulting discrete modes of the orthonormal DZT for the three types
of non redundant sampling patterns: random, R, perturbed hexagonal (with perturbation
o =103) H and Fermat spiral, S. The three upper rows correspond to 36 (n <7) samples, and
the lower rows to 91 (n < 12) samples. The bottom row (o number of samples) shows the
original continuous Zernike polynomials. (For the case H36 the central sample was
removed, otherwise we would have 37 sampling points). On ly modes with non-negative
angular frequency (m = 0) are shown up to radial order n=7. If we compare the discrete and
continuous (bottom row) modes we can see clear differences. Many times we observe
change of polarity (sign reversals) of different modes, depending on the sampling pattern
and number of samples. For instance, tilt, Q] shows a sign reversal for random and spiral
patterns for the low sampling rate (36), but for 91 samples there are no reversals (except for
the hexagonal one). In general, similarities between discrete and continuous modes increase
with the number of samples (as expected). The differences tend to increase with the order of
polynomials. This is patent for the highest order modes n=7 in the upper rows.

These discrete Zernike modes do change with the sampling pattern, which has physical
consequences. For example, the spherical aberration of a standard (continuous) lens ( ZY,
bottom row in Fig. 2) is different from that of a segmented mirror. If one has a mirror with
36 hexagonal facets the spherical aberration looks different: QY for H36. The same applies
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for defocus, astigmatism and the rest of aberration modes. In fact, the aberration modes
change both with the sampling type and the sampling rate, especially the highest orders. In
other words, the Q basis may have a real physical meaning as wave aberration modes of
segmented (or faceted) optical systems, such as compound eyes, large telescopes, lenslet
arrays, spatial light modulators, etc.

3.2.2 Discrete modes of wavefront gradient

The same analysis can be applied to the partial derivatives (gradient) of the wavefront to
obtain the complete orthogonal basis Q4. As we said before, the physical nature of the
gradient modes is totally different, as the gradient is proportional to the transverse
aberrations. These are the coordinates x”;, y’; of the impact of rays, normal to the wavefront.
For this reason, Qq contains the modes of the spot diagrams, which are the initial set of raw
data in many optical computations (ray tracing) and measurements (wavefront sensing, etc.)
Spot diagrams are essentially discrete in nature as they contain a finite number of spots. As
before, we can obtain the modes for any non redundant pattern, but as we explain below,
we obtained a much higher performance (lower CN) for the quadratic spiral (or spiral 2),
with p = 4, so that the density of samples increases towards the periphery with p2. Figure 3
shows the spot diagram modes for that spiral sampling and I = 91. The three columns
represent the initial basis D (left); the same basis, but after normalizing the ZP derivatives
(center), as an intermediate stage in the orthonormalization process, Dy; and the final
orthonormal modes, Qq (right). The axis of the plots were adjusted for visualization, being
an scaling factor of 102 between the axis used for representing D and those used fot D, and
Qa. The plot of the column of D corresponding to the pair (8,8) is incomplete, some of the
impact rays were not represented because they are out of range, causing the difference in the
aspect with the plot of Dy.

4. Implementation and results of computer simulations

We implemented the above sampling patterns and basis functions and conducted different
realistic computer simulations to test the possibilities of practical application.

4.1 Wavefronts

In the simulations we used ocular wavefront aberration data taken from an experimental
data set used in a recent study (Arines et al., 2009). We implemented the different sampling
patterns proposed so far, always with I = 91 samples. Two types of initial wavefronts having
either 91 or 182 Zernike modes (non cero coefficients) were tested. Coefficients for higher
orders were assumed to be zero. Different levels of noise (0%, 1%, 3% and 5%) were added
to the initial samples. The metric used was always RMS errors (differences) or values. First
of all, we compared standard least squares estimation (Eq. 6) and the inverse DZT (QT) (Eq.
10a) to estimate the continuous and discrete coefficients (first and second rows in Table 2).
From them, we reconstructed the wavefront (3rd and 4th rows). For the sake of simplicity,
we only show results for regular (unperturbed) hexagonal (H), random (R) and spiral (S)
patterns. The original RMS wavefront was 2.5 pm.

The results by standard least squares (c— ¢, first row,) are bad for the hexagonal pattern,

even for the ideal case (left columns). The result is better for complete sampling schemes (R
and S), but even then, the results are strongly affected by aliasing due to the presence of
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Fig. 3. Initial (D), normalized (D) and orthonormal modes (Qq) of wavefront gradient (spot
diagram) for the quadratic spiral of 91 samples. Pair numbers are the (n,m) index of ZPs.

higher order modes (i.e. undersampling; central columns). The right column shows huge
errors in the presence of noise. Therefore, the standard method of Eq. 6 can not be applied
with critical sampling in practice. This is the reason why standard modal estimation
requires redundancy with I >> J. Using the DZT (and the non redundant schemes R and S),
the results (second row in Table 2) are greatly improved (the errors are now residual, of the
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order of 1014 pm). Note that now we applied matrix R to the continuous original coefficients
to compute the RMS error in the discrete Q basis. Using the DZT, the error also increases
with the presence of higher order modes and noise, but improves by one (182 modes, central
columns) or three (noise, right columns) orders of magnitude compared to the standard
method. If we now reconstruct the wavefront from the estimated coefficients, we observe
that the standard method (third row in Table 2) is affected by both aliasing and noise, but
the DZT, Q transform (bottom row in Table 2) is basically unaffected, and hence the initial
measurements are recovered with high fidelity.

91 modes; 0% noise 182 modes; 0% noise 91 modes; 3% noise
RMSerrorHlR‘S H|R|S H|R|S

c—Cz 2717 4.3x10° 1.6x10¢| 2.53 0.066 0.003 | 1.6x10* 2.0x10% 1.2x10°
Re-cq 3.1x1014 1.1x10-14 3.8x10+ 3.8x10+ 0.61 0.64

w-Zcz |2.4x108 2.0x1010 1.3x100| 4.5x105 1.5x10-10 1.3x10°| 0.13  2.7x107 9.5x108

w—Qcq 2.1x1014 1.1x10-14 1.5x10-14 1.4x10-14 1.8x10-14 1.4x10-14

Table 2. RMS errors obtained with standard (Z) and discrete (Q) Zernike basis for
coefficients (c) and in wavefront (w) for hexagonal (H), random (R) and Fermat spiral (S)
sampling patterns. All values are in micrometers.

4.2 Wavefront reconstruction from wavefront slopes

The problem of wavefront reconstruction from its slopes is totally different, since here the
reconstruction requires to integrate the gradient. If we apply Q4T we are not integrating, and
therefore to recover the wavefront coefficients, we have to apply either Rq? or D1 directly.
This means that we have especial care with the condition number of these matrices to avoid
excesive noise amplification. We studied the problem of potential noise amplification in two
ways. First, we obtained the singular value decomposition of matrix D as a metric to predict
the amplification of noise. The condition numbers obtained for the square 182x182 D
matrices (I = 91) improve progressively: « for H (hexagonal); 4.3x107 for P (perturbed H);
1.6x107 for S1 (homogeneous sampling spiral); 4x10¢ for R (random); and 1.7105 for S2
(quadratic sampling spiral). This has important consequences. In the presence of noise, noise
amplification will preclude to work with critical sampling, but on the other hand we should
expect that spiral S2 is going to provide better reconstructions.

To have a more realistic estimation of the performance, including the effects of noise
amplification, we conducted a series of computer simulations. Now the task is to reconstruct
different number of modes, starting from | = 1 (maximum redundancy) and progressively
increasing up to the critical value ] = 2I (zero redundancy). Now we will use standard least
squares (¢ = (DTD) D m), except for the last case (critical sampling) where D is square.
We applied the OR factorization to D to improve its condition number (typically by a factor
of 2.) Our criterion for the best reconstruction is that of minimum RMS reconstruction error.
We used the same data set as before, but now we always considered wavefronts with 182
Zernike modes. This means that now we only have the effect of noise, while we assume that
the number of modes 182 is large enough to avoid aliasing (spectral overlapping.) Now the
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initial wavefront has an RMS value of 0.54 um (~11). For each condition, 30 different
measurements m were simulated using the expression m; = Dc+ n, for the k-th realization,
where ny is a column vector containing (Gaussian zero-mean) random noise. Then we
computed the mean and standard deviation (error bars) over the 30 realizations. The noise
variance was adjusted to simulate different levels of signal-to-noise ratio (SNR) from 1 to «
(zero noise). We computed the SNR as SNR = (|m])/ (Om), the ratio between the average
absolute measurements value among all the noise-free measurements, and the mean
standard deviation of the noise (where k referes to the different realizations).

The results for the different sampling patterns are plotted in Figure 4, for the case of SNR = 30.
That SNR is within the range of typical values in ocular aberrometers (Rodriguez et al., 2006).
The vertical axis represents the RMS difference between the original (ideal) wavefront and that
reconstructed from the noisy measurements; and the horizontal axis represents the number of
modes | considered in the matrix D. As we can see, all the sampling patterns show a similar
performance for | < 62, but for | > 62 the noise amplification increases rapidly for the
redundant H pattern. This particular line ends when we reach the maximum rank of D. For
the non redundant sampling patterns (R, P, S1 and S2) the effect of noise amplification
becomes patent for higher values of J; as | increases S2 shows the best behaviour. For this
sampling pattern, and SNR = 30, the optimal performance is obtained for | 122, significantly
greater than I = 91. This optimal number of modes (best reconstruction) is roughly double than
62 obtained for standard redundant patterns. For the ideal noise free case (SNR =) the best
reconstruction corresponds to | = Rank(D) . This is ] = 89 for standard (hexagonal) and ] =182
for non redundant sampling patterns respectively. The results for different SNR= 1, 10, 30, 100
and oo, confirm the same type of behaviour as in Fig. 4. As the SNR increases, then the absolute
minimum is lower and moves to the right (the optimum value of ] increases) and conversely.
Random and spiral curves are better in all cases and tend to show a rather flat valley
indicating that the optimal value of number of modes, | is not critical. This behaviour is
opposite to standard and perturbed sampling grids where the minimum is much more
marked. This means that the number of modes is critical and that the least squares fit is less
robust. Finally, the quadratic spiral S2 always provides the best reconstruction.
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Fig. 4. RMS error of the reconstructed wavefront for different sampling patterns.
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5. Conclusion

In conclusion, the non redundant sampling grids proposed above are found to keep
completeness of discrete Zernike polynomials within the circle. This has important
consequences both in theoretical and practical aspects. Now it is feasible to implement direct
and inverse discrete Zernike transforms (DZT) for these sampling patterns. Furthermore, we
found that when the discrete ZPs basis is complete, then the basis formed by their (equally
sampled) gradients is complete as well. This is true for all non redundant grids tested so far,
but spiral 2, with a quadratic increase of sampling density from the centre to the periphery,
seems to be especially well adapted to the symmetry of ZPs. In fact, it provides the lowest
CN. On the other hand, orthogonality is lost either by sampling or by differentiation in all
cases studied. We can recover this property and construct an orthogonal basis Q, through
OR factorization, but at the cost of loosing some information contained in R. In the case of
the DZT, the Q basis implies to work in the discrete domain. Thus, we lose the interpolation
ability of continuous polynomials. In the case of gradients, we loose the information both for
interpolation and for integration. It is possible to apply R-1 but then there is the concern of
noise amplification.

There are many practical implications of completeness. For standard redundant sampling
grids, and realistic values of the SNR of the input data, the optimal number of modes
providing the best reconstruction is about | = I/2. In wavefront sensing or ray tracing, where
one has two measures at each point, | can be somewhat higher (0.6 or 0.7 times I). Our
results suggest that by using non redundant sampling patterns, one can reconstruct double
number of modes. This has a double effect in improving the reconstruction by decreasing
the reconstruction error due to noise, but also due to potential spectral overlapping.
Furthermore, both completeness and lower redundancy can help to save costs in many
applications, ranging from numerical ray tracing to modal wavefront control by deformable
mirrors (adaptive optics). In the first case one can save computing time, and in the second
case one can save mechanical actuators.

We believe that the discrete orthogonal modes of Figures 2 and 3, for discrete wavefronts
and for spot diagrams, respectively, have a clear physical meaning for optical systems,
measurements or computations which are discrete intrinsically. Fig. 2 shows examples of
wave aberration modes in segmented optics (arrays of facets, mirrors, microlenses, etc.) with
determined geometries (hexagonal, random, or spiral). It is clear that these aberration modes
change both with the array geometry and with the number of facets (samples), especially
higher orders. The physical meaning of the modes of spot diagrams (Fig. 3) is even more
obvious, since ray tracing or wavefront gradient measurements are essentially discrete.
Regarding practical applications, sampling grids with inhomogeneous densities, such as
quadratic spiral, or random (irregular) are difficult to implement in conventional monolithic
microlens arrays used in Hartmann-Shack sensors, segmented mirrors, etc. However there
are highly flexible and re-configurable (almost in real time) devices such as liquid crystal
spatial light modulators (Arines et al. 2007) or laser ray-tracing methods (Navarro &
Moreno-Barriuso, 1999) which can easily implement almost any possible sampling grid.
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Master Equation - Based Numerical Simulation
in a Single Electron Transistor Using Matlab

Ratno Nuryadi

Center for Material Technology

Agency for Assessment and Application of Technology, Jakarta
Indonesia

1. Introduction

Recent modern fabrication technology allows us for the fabrication of nanometer-scaled
devices, which is possible to observe single electronic or single electron tunneling phenomena
(Averin & Likharev, 1991; Likharev, 1988; Likharev, 1999; Hanna et al., 1991; Tucker, 1992). On
the other hand, MOSFET (metal-oxide-semiconductor field effect transistor) devices with
channel length below 20 nanometer (nm) are no more properly operated because the down-
scaling of MOS devices causes a large statistical fluctuation of the threshold voltage. A possible
approach to overcome this problem is to use the single electron devices for future VLSI (very
large scale integrated circuit) (Takahashi et al., 1995; Saitoh et al., 2001).

Nanometer scale single electron devices have the following features, i.e., low power
consumption and small size. These are key features to realize ultra high density circuits.
Single electron circuits with new architecture are also possible because the basic operation of
single electron devices is quite different from that of conventional semiconductor devices.
There are two major requirements for single electron tunneling phenomena (Coulomb
blockade) to occur (Averin & Lhikarev, 1991; Likharev, 1988; Likharev, 1999). Firstly,
thermal energy kzT must be much smaller than elemental charging energy e?/2C. This
ensures that the transport of charges is in fact governed by the Coulomb charging energy.
This condition can be fulfilled either by lowering the temperature or by decreasing the
capacitance which means to reduce the island size. Usually, experiments are performed at
temperatures of a few mK and for structures with island sizes of a few hundred nanometers.
Second requirement is related to tunnel resistance which must exceed the quantum
resistance (h/4e? ~ 6.5 kQ). This condition ensures that the wave functions of excess
electrons between the barriers are basically localized. On the other word, in the case of lower
tunnel resistance, excess charges extend over the barriers so that no single electron tunneling
event can be possible.

There are several types of circuits where the single electron tunneling phenomena are being
explored, such as single electron box (Likharev, 1999), single electron transistor (SET) (Tucker,
1992; Takahashi et al., 1995; Saitoh et al., 2001; Wolf et al., 2010; Sun et al., 2011; Lee et al., 2009),
single electron pump (Ono et al., 2003), single electron turnstile (Moraru et al., 2011) and single
electron circuits with several junctions (1D and 2D arrays) (Nuryadi et al., 2003; Nuryadi et al.,
2005). A double junction system is most important single electron circuit because of a basic
component of SET. At small applied voltage, the system remains in the Coulomb blockade
state, and no current flows through the double junctions. On the other hand, at higher applied
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voltage, the Coulomb blockade is defeated and the electrons can tunnel through the junctions
and finally the current flows. If the island between two tunnel junctions is electrostatically
controlled by the gate capacitance, the system became single electron transistor. This device is
reminiscent of a MOSFET, but with a small island (dot) embedded between two tunnel
capacitors/junctions, instead of the usual inversion channel.

It is well known that a numerical simulation of the devices could help a great deal in their
understanding of the devices. However, although so far several groups have reported the
simulation and modeling of single electron tunneling devices (Amman et al., 1991; Kirihara et
al., 1994; Fonseca et al, 1997, Wasshuber et al., 1997; Nuryadi et al, 2010), numerical
simulation with detail explanation and easy examples is still needed, especially for beginners
in the field of single electron devices. Basically there are two methods to simulate the single
electron phenomena, i.e, master equation (Amman et al., 1991; Nuryadi et al., 2010) and
Monte Carlo methods (Kirihara et al., 1994; Fonseca et al., 1997; Wasshuber et al., 1997).

The goal of this chapter is to simulate numerically current-voltage characteristics in the
single electron transistor based on master equation. A master equation for the probability
distribution of electrons in the SET dot (see Fig. 1) is obtained from the stochastic process,
allowing the calculation of device characteristics. First, I will start with an introduction of
the basic equations in Master equation (section II). Next, the derivation of free energy
change due to electron tunneling event is discussed in section III. The flowchart of
numerical simulation based on Master equation and the Matlab implementation will be
discussed in section IV and V, respectively. The examples of simulation resuls are presented
in section V. Finally, section VI is conclusion.

2. Basic equations in master equation based simulation

Figure 1 shows the SET circuit consisting of a dot between the source and drain electrodes
separated by tunnel capacitors C; and C,. Both tunnel capacitors C; and C, have tunnel
resistances R; and R,, respectively. The dot is also coupled to the gate electrode with
capacitor C; in order to control the current flow. The total capacitance between the dot and
the outer environment can be writen as Cy, where

CZ=C1+C2+CG. (1)
gate ¢ +Vg
cg_ +Qg
T~ " 1
1 -Qg :
drain & @ |+, DY source
+V oe———
e eebt—> L
G Ry : __________ 1Cu R,
dot

Fig. 1. Single electron transistor has a structure of the dot in the center coupled by two
tunnel capacitors (C; and C,) and a gate capacitor C;. Source is connected to a ground,
where drain and gate are applied by voltages V and V; (Tucker, 1992).
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There are four main equations for current-voltage characteristics of single electron circuits,
i.e, free energy change AF, tunneling probability/rate I, steady state master equation and
current equation I, as follows.

Free energy change:

AFE(ny,my) = c%{% + (Ne = Qo) F (C + C)V + GV} (22)

e (e _ — —
AFE(ny,n,) = C_E{E F (Ne — Qo) F GV F CoVe} (2b)

Tunneling probability/rate:

R0 = oz [ ¥ ] ()
! Rie? 1 — exp[AF? /kyT]
oo 1 —AFf ] 3b
frN) = Rje? [1 - exp[AFzJ—r/kBT] G0
Steady State Master equation:
PN (N) + L (N)] = p(N + DLV + 1) + 57 (V +1)] 4)
Current equation:
IV) = e ERaeeo (NI (V) = 7 (V)] = € ER-—co p(N[IF (V) — I ()] ®)

where e is the elemental charge, kj is the Boltzmann constant, T is the temperature, N is the
number of electrons in the dot, n; and n; are a number of electrons flows through the
capacitor C; and capacitor C,, respectively, Q, is the background charge and +/- express that
the electron tunnels through the capacitor with the direction from left to the right and from
right to the left, respectively.

Equations (2a) and (2b) are used to calculate the free (electrostatic) energy change AF of the
system due to the one electron tunneling event. It is important to be noted that only tunneling
events decreasing the electrostatic energy (and dissipating the difference) are possible.

The values AF from equations (2a) and (2b) are used to calculate electron tunneling
probability in the equations (3a) and (3b), respectively. The tunneling of a single electron
through a particular tunnel junction is always a random event, with a certain rate I (i.e.,
probability per unit time) which depends solely on the AF. Equation (4) expresses the
Master equation in steady state, resulting the value of p(N), which is necessary to be used
for the current calculation in equation (5).

3. Derivation of free energy change in single electron transistor circuit

As explained above that the free energy change of the system before and after tunnel event
plays a key role on the occurrence of the electron tunneling, i.e., whether the tunneling event
occurs or dot. Therefore, the origin of the free energy change in SET system is important to
be reviewed. The free energy of voltage-biased single electron transistor is defined by the
difference in electrostatic energy stored in the circuit (total charging energy) and work done
by the external voltage source due to tunnel events.



242 Numerical Simulations of Physical and Engineering Processes

3.1 Total charging energy

In order to calculate total charging energy, it is necessary to determine the voltage applied
on the tunnel capacitor C; (V;) and tunnel capacitor C, (V,) using the following step. The
configuration of the charges on each capacitor in the single-electron transistor circuit
(Figurel) can be expressed as (Tucker, 1992),

=G0V =G =1, (6a)

Q2 =GV, (6b)

Qs = Cc(V = V2). (6¢)

It is noted that the V;, is also subjected to the voltage in the dot. Charge in the dot is given by,
Q=0Q;~ 01— =Ne—0Q. @)

Here, N = n; — n, is a number of electrons in the dot.
If the equations (6a), (6b) and (6¢) are inserted into an equation (7), it can be obtained the V,
as a function of drain voltage V and gate voltage V, as follows,

GV, — CI(V - Vz) - CG(VG - Vz) =0,

1
Vo= (GV + GV + Q) ®)
X

From equation (8) and relationship of V; + V, =V, it can be obtained the value of voltage on
capacitor Cy, as follows,

1
Vi =V—C—(C1V+CGVG+Q)
5

1
vV, = - [(Cy + Co)V — CeVs — Q] )

Note that both V; and V, are a function of N, which is the number of electrons in the dot
because of Q = Ne — Q.
Next, total charging energy on the SET system can be calculated as follows,

_@ e e
€T 2¢c, " 2C,  2¢;
1
T [CoCi(V = V)2 + CLC,V2E + CoCVE + Q7] (10
P

Since the values of external power supply V and V; is constant, the effect on electron
tunneling process only influences the term of Q%/2Cs.

3.2 Work done by external voltage source due to tunnel event

There are two types of tunnel events, i.e., electron tunnels through the capacitor C; and the
electron tunnels through the capacitor C,. The amount of the work done by external voltage
source is different from one event to another one. Therefore, the detail explanation of the
work done for these two types is discussed. Figure 3 shows the charge flow enter/exit from
the voltage source when the electron tunnel through the capacitor C; (right direction).
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+V; e
-6Q,=Se
C, LG
CaC "
e+§(11= 26 2 @ : ! 5(12: C_23
C; _(55
+V o
Ce > J__
Cs R1: ________ : Cu R,
n,—>n,+1

Fig. 3. The charge flow in the single electron transistor circuit when one electron through the
capacitor C; (Tucker, 1992).

Work done by the power supply when the electron tunnel through the capacitor Cjis
formulated as follows:

1. Change in charge when one electron tunnels through capacitor €; (ny — ny +1)
Change of dot potential due to this electron tunneling (Q — Q@+e or N —> N +1) is

5V2 — Vzafter _ Vzbefore/ thus:
1 1
8V, = C—(QV +CeVe+(Q+e)— [C— (CV+CeVs + Q)
x X

e

6V, = — 11
= a
It is noted that Vzaf T and Vzbef T express the values of V, after and before tunneling,

respectively.

Change of charge in capacitor C; is 6Q; + e, where 6Q; = fo ter f efore

equation (6a) it is obtained the below relationship,

. Consider the

501 — Cl(V _ Vzafter) _ Cl(V _ Vzbefore)’

5Q, = —C,5V,. 12)

By inserting equation (11) into equation (12), it is obtained

Therefore, total change of the charge in capacitor C; is,

G
6Q;te=——e+te
Cx

6Q,+e= G e (13)
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Change of charge in capacitor C, is 6§Q, = gf fer Q;’ efore Consider the equation (6b) 6Q,
becomes,

502 — CZVZafter _ CZVZbefore’

8Q; = G4V,
G
=== 14
60Q; Cs e (14)
Change of charge in capacitor C; is §Qg = gf ter Qgef °"®. Consider the equation (6c) §Qg

becomes,

SQG — CG(VG _ Vzafter) _ CG(VG _ Vzbefore)’

8Q¢ = —CgoVs,
C

6Qc = -Ze (15)
Cs

2. Work done when one electron tunnel through capacitor €; (n; — n; +1)

Work done by power supply is a sum of multiplication between charge change in each
terminal and a given power supply voltage. Thus, when one electron tunnel through the
capacitor C;, the work becomes,

Ws(ny) = ny[(e +8Q)V + (8Q)Vg + (8Q3) x 0],

G eV C, eVG] (16)
The same calculation can be done when the single electron tunnel through the capacitor C,,
as shown in Figure 3.

Ws(n) =ny [

+Vse
8Q,=Ce
C, l TG
[
6Q,= C_le ! ! e+dQ,= Cat Gy e
Cy Cr
+V e
ee J_—
CoRii__ . 1Ca, Ry
n,~>n,+1

Fig. 3. The charge flow in the single electron transistor circuit when an electron tunnels
through the capacitor C,.

1. Change in charge when an electron through the capacitor C; (n; — n; + 1)
Change of potential in the dot due to electron tunneling (Q — Q@ —e or N — N —1) is

5V2 — Vzafter _ Vzbefore’ thus :
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8V, = = (CV + CoVg + (@ =€) = [ (CaV + CaVo + Q).

= .

e
oV, = _C_z 17)

Change in charge on a capacitor C; is 6Q; = ff rer — Qf efore

6Q,becomes,

. Consider the equation (6a),

5Q1 — Cl(V _ Vzafter) _ Cl(V _ Vzbefore)’

8Q, = —C16V;,
50, = &
Q= Cs e (18)
Change in the charge on a capacitor C, is §Q, + e, where 6Q, = Q;f ter _ Qf efore Consider
the equation (6b), §Q,becomes,
5Q2 — CZVZafter _ CZVZbefore’
8Q, = C,(6V),
G,
602 = _ae
So the total change in charge on the capacitor C, is,
G
6Q, te=——e+te,
Cs
C; +Cg
6Q,+e= C—);e (19)

Changes in the charge on a capacitor C; is §Q; = gf ter — Qgef ore

6Q; becomes,

. Consider equation (6c),

6QG — CG(VG _ Vzafter) _ CG(VG _ Vzbefore)’

6Q¢ = —CoV3,
8Q¢ = C_Ee (20)

2. Work done when one electron through the capacitor C; (n; — np + 1)
From the above calculation, the work done by the power supply when the electrons tunnels
through the capacitor €, becomes

Ws(ny) = na[(8Q1)V + (6Q6)V; + (e + 8Q;) x 0],

C C
Ws(ny) = n, [C—;ev+c—zeva] 2
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3.3 Free energy

The most important requirement for the accurence of single electron tunneling is that the total
energy of the transistor system must decrease due to one electron tunneling. In the other word,
the electron tunneling will not occur if the total energy of the system increases due to the
electron tunneling. This condition is called as Coulomb blockade. The free energy is defined by
the difference in the total charging energy and total work done by the power supply, as follows:

F(ny,ny) =E; — Wsmmla

Q? Ce + G,

C
F(nqy,n,) =E—{n1e[ o Cy

V- VG] + nye [—V +— ]} + constant (22)
Cx

3.4 Change in free energy due to tunnel event

Change in free energy after and before electron tunneling will determine whether the
electron tunneling occurs or not. If the system becomes more stable (energy decreases) when
the electron tunnels, electron tunneling will occur. Let's look at the conditions when the
electron tunnels through the capacitor C;. The free energy change after and before tunneling
can be calculated as follows:

AF;L(npnz) =F(n; £1,n;) — F(ny,ny),

(Qie)z CG+CZ CG CG
B2 ) = |55~ o £ e [V =] e[ty + G20}
T (ng,ny) { 2C, (ny £ De e |4 CEVG +nye CEV+CEVG

(e[ o] e[y v
n.e V——V;| +nye V+—=V,
{zcz 1 Cs Cs € e, ey ©

e
AR (ny,ny) = _{E QF (Cg + C)V £ CgVq) (23)

By inserting Q = Ne — Q, into equation (23), the equation (2a) is obtained.

On the other hand, when the electron tunnels through the capacitor C,, the free energy

change when the after and before tunneling is calculated as follows:

AFf(ng,my) = F(ng,ny £ 1) — Fny,ny),

(Q $ 6)2 CG + Cz CG CG
— = + - -~
2C, {nle [ e %4 C VG] + (n, £ De [ V+ C VG]}

2
e ne @V-C—GVG +1,e QV+C—GVG
2Cy Cy Cy Cy Gy

e
AFF (nl,nz)——{§$Q CLV F CoVe)

(24)

By inserting Q = Ne—(Q), into equation (24), the equation (2b) is obtained.
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4. Master equation

Figure 4 shows the numerical simulation step to calculate IV curve based on Master
equation method. First, the values of the physical constants (Boltzmann constant
and elemental charge) and device parameters (C;, C;, Cg, Ry and R;) are defined. Then,
the external parameters (V, V;, Qo and T) are given. Next, the free energy change of the
system AF when the electron tunnels across the tunnel capacitance, is calculated. The AF
depends on the number of excess electrons N in the dot, as expressed in equations (23)
and (24).

e ce —
AR (m,m) = {5 £ (Ne = Q) F (G + GV Ca (252)

AFE(ny, n,) = { F (Ne — Qo) F GV F CeVe} (25b)

Using the values of AF, single electron tunneling rates across each of two junctions is
determined. Each rate depends on both the tunneling resistance of the junction and the total
energy change of the system due to the tunneling event. On the other words, for single
electron transistor circuit simulation, each electron tunneling has to be carefully monitored.
The electron tunneling rate, which is represented by I % can be easily obtained from the
basic golden-rule calculation (Averin & Lhikarev, 1991),

FE) = [ —AFf ]
! Rie? |1 — exp[AF* /kgT| (26a)

LNy = —AR
L) = Rje? [1 - exp[AFZi/kBT]] (26D)

Next, a stochastic process in SET circuit is considered. The island charge e will change by the
tunneling of electrons from or to the island as described by the master equation.

9p(N,t) _

at
Here, the dc characteristics is investigated, therefore the steady state solution of equation
(27) is desired. The steady state master equation is found by setting the time derivative of

the probability distribution function equal to zero. Therefore, equation (27) becomes (Hanna
etal., 1991)

p(N + D[N + 1) + 7 (N + D] = p(N) [ (N) + I (V)] (27)

PN (N) + L (N)] = p(N + DLWV + 1) + 7 (N + 1], (28)

In this condition, it is necessary to calculate p(N) for all of possible charge state N. By
inserting N from —oo to oo into equation (28), the following equations are obtained.

p(=0)[I; (=) + I}* (=0)] = p(=o0 + D[[;' (=00 + 1) + [;" (=00 + 1)]
p(=D[; (=) + L (=1D] = p(0)[1+(0) + I;7(0)]

PO (0) + 7 (0)] = p(MIL" (D) + 7 (1]
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P (D) + LY (D] = p(DI[(2) + 7(2)]
pMI; (M) + FM)] = p(n+ DL+ 1) + 7 (n + 1]
p(0 = D[ (00 — 1) + I (00 = 1)] = p(e0)[I;*(o0) + [;7(0)] (29)
To solve equations above, the p(n) must satisfy the standard boundary conditions, i.e.

p(N) = 0,as N — +oo. (30)

Using this condition, all of the p(N) can be found. However, the p(N) here is not
normalized, so that p(N) requires the normalization as follows:

YN=—p(N) = 1. (31a)

For this, the following transformation is need.

p(N)
N) >t
S T (1)
Finally, the current can be calculated by,
1) = e Z5e e NI (V) = I (V)] (322)

Here, the multiplication of the probability and the difference of rate I7*(N)— I (N)
describes the net current flowing through the first junction. In addition, the current may also
expressed in the terms of the rates at second junction, as follows.

IV) = eXR-—e p (NI (N) — I (N)]. (33b)

5. Matlab implementation

The above equations can be easily implemented in MATLAB. As explained in previous
section, the flowchart of numerical simulation is as follows. In the first step, the following
physical constant and device parameters are defined as follows.

o\°

Matlab program source for numerical simulation of Master equation
in single electron transistor

This program code is made by Dr. Ratno Nuryadi, Jakarta, Indonesia
clear all;

)

% Definition of Physical constant

o\°

o\°

g=1.602e-19; % electronic charge (C)
kb=1.381e-23; % Boltzman constant (J/K)

% Definition of Device parameters

cl=1.0e-20; % tunnel capacitor Cl1 (F)
c2=2.1le-19; % tunnel capacitor C2 (F)
cg=1.0e-18; % gate capacitor Cg (F)

o\°

ctotal=cl+c2+cg;
mega=1000000;
rl=15*mega;
r2=250*mega;

total capacitance (F)
definition of mega=10°
tunnel resistance R1 (Ohm)
tunnel resistance R2 (Ohm)

o\° o\

o\°
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Second, the values of external parameters (V, V;, Qo and T) is given. Here, the V;, Qp and T
are kept a constant while the V is varied from Viin t0 Vimay, as follows:

Vg=0; % gate voltage (V)
q0=0; % background charge g0 is assumed to be zero
temp=10; % temperature T (K)

o°

vmin=-0.5;
vmax=0.5;

NV=1000;

dv= (vmax-vmin) /NV;
for iv=1:NV

drain voltage minimum Vmin (V)

drain voltage maximum Vmax (V)

number of grid from Vmin to Vmax

drain voltage increment of each grid point
loop start for drain voltage

V(iv)=vmin+iv*dv; drain voltage in each grid point

% Note that loop end for drain voltage is located in the end of this

program source

o° o° o o°

o\°

Third step is calculation of AF, as follows:

o°

Nmin=-20;
Nmax=20;

minimum number of N (charge number in dot)

maximum number of N (charge number in dot)

for ne=1:Nmax-Nmin loop start for N
n=Nmin+ne; N charge number in dot

% Calculation of AF in equations (25a) and (25b)
dFlp=qg/ctotal* (0.5*g+ (n*g-go0) - (c2+cg) *V (iv) +cg*Vg) ;
dFln=qg/ctotal* (0.5%*g- (n*g-g0) + (c2+cg) *V (iv) -~cg*Vg) ;
dF2p=g/ctotal* (0.5*g- (n*g-g0) -c1*V (iv) -cg*Vg) ;
dF2n=g/ctotal* (0.5*g+ (n*g-g0) +c1*V (iv) +cg*Vg) ;

% Noted that loop end for N is located after calculation of I

o° o°

o\°

Forth, the values of AF are identified and then used for the calculation of I. If AF is negative,
I’ will be calculated by equations (26a) and (26b(. However, if the AF is positive, I' is set to
be closed to the zero (very small). Note that the value of I is always positive. These
identifications are done for four conditiond of AF.
if dF1p<0
Tlp(ne)=1/(rl*g*q)* (-dFlp)/(1-exp (dFlp/ (kb*temp))) ;
% I’ positive in equation (26a)
else
Tlp (ne)=1le-1; % ' positive is assumed to be very small
end
if dF1ln<0
Tln(ne)=1/(rl*g*q) * (-dFln) / (1-exp (dF1n/ (kb*temp))) ;
% ' negative in equation (26a)
else
Tln(ne)=1le-1; % I' negative is assumed to be very small
end
if dF2p<0
T2p (ne) =1/ (r2*g*q) * (-dF2p) / (1-exp (dF2p/ (kb*temp) ) ) ;
% I' positive in equation (26b)
else
T2p (ne) =1le-1; % I’ positive is assumed to be very small
end
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if dF2n<0
T2n (ne) =1/ (r2*g*q) * (-dF2n) / (1-exp (dF2n/ (kb*temp) ) ) ;
% I' negative in equation (26b)

else
T2n (ne) =1le-1; $ ' negative 1is assumed to
be very small
end
end % loop end for N

Fiveth, the p(N) of equation (28) is calculated. For this, normalization of equation (31a) must
be satisfied. Here, the values of p(Nmin) and p(Nmax) is assumed to be 0.01.

o\°

(Npin) 1s assumed to be 0.01

p(1)=0.001; P
0 (Npax) 1s assumed to be 0.01

p (Nmax-Nmin)=0.001;

o°

Sixth, normalization of p is done. Here, Y5 _., p(N) is calculated.

)

sum=0; % sum=0 is initial wvalue to calculate p
for ne=2:Nmax-Nmin
p(ne)=p(ne-1)* (T2n(ne-1)+Tlp(ne-1) )/ (T2p (ne) +Tln(ne)) ;
% calculation of p(N) in equation (28)
% The conditions below are wused to avoid divergence of Matlab
calculation
if p(ne)>1e250
p (ne)=1e250;
end
if p(ne)<le-250
p(ne)=1e-250;

sum=sum+p (ne) ;

for ne=2:Nmax-Nmin
p (ne) =p (ne) /sum; % Normalization in equation (31b)
end

Finally, the current is computed as follows:

sumI=0; % sumI=0 is initial condition
for current calculation
for ne=2:Nmax-Nmin
sumI=sumI+p (ne)* (T2p (ne)-T2n(ne)) ;

end
I(iv)=g*sumI; $ I in equation (32b)
end % end of drain voltage loop
plot (V,I); % plot of I vs V
for iv=1:NV-1
dIdv(iv) =(I (iv+1l)-I(iv))/dv; % calculation of d4dIdv
end
figure;

plot(V(1,1:NV-1),dIdv); % plot of dIdVv vs V
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1. Definition of physical parameters
and device parameters

'

y

2. Input external parameters (V, V,, 0, and 7).

Here, V'is varied from V,;, to V..

|

3. Calculation of AF in egs,
(25a) and (25b)

Ar>0

Calculation of A"
in egs. (26a) and (26b)

|

5. Calculation of p in eq. (28)

v

6. Normalization p in eq. (31b)

!

7. Calculation of current / in eq. (33b)

Plot a graph

Fig. 4. Flow diagram of the Matlab program used to solve Master equation.
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6. Examples of simulated results

Two examples will be used to demonstrate the numerical solution of Master equation in
single electron transistor.

Example 1:

Figures 5(a) dan (b) shows current-drain voltage characteristic of the SET and its dI/dV
curve. The parameter values are C;= 1.0x10-20 F, C,= 2.1x10-1° F, Cg= 1.0x10-18 F, R;= 15 MQ
and R,=250 MQ. The calculation was carried out for an operating temperature of 10 K, V=0
V and Qo= 0. As shown in Fig. 5(a), at small source-drain voltage V there is no current,
indicating the suppression of the current which is known as the Coulomb blockade. In this
region, any tunneling event would lead to an increase of the total energy and also the
tunneling rate is exponentially low. There is also evident that the I-V curve has staircase
shape, which is called as Coulomb staircases.

current | (nA)
dlidv
%]

05

400 200 0 200 400 000 200 0 200 400
drain voltage V (mV/) drain voltage V (mV)

(@ (b)
Fig. 5. (a) The current - drain voltage characteristics for SET and (b) dI/dV curve with the

device parameters are C;= 1.0x10-20 F, Co= 2.1x10-9 F, Cg= 1.0x10-18 F, R;= 15 MQ, R,=250
MQ and the external parameters are V=0V and T=10 K.

The Coulomb staircase can be understood simply in terms of simulation model in equation
(28). Initially at drain voltage V=0, we have p(N=0)=1, and I'1*(N=0)= I>*(N=0)=0. When
V=V, (Viis threshold voltage), the rates I';*(N=0) and I>*(N=0) jump sharply allowing charge
to flow through the junction capacitances, so that p(n=1)>0. When V=Vi+e/2Cys there is
jump in I'1*(N=1) producing the next another step in I-V characteristics. Such steps happen
due to each increase of V by e/2Cy. Simulation result in Fig. 5 has values of C;>C; and
R2>R;. According to Fig. 5(b), the width of the steps is ~131 mV, which is determined by
e/2Cy.

Example 2:

The current-gate voltage characteristics of SET is plotted in Fig. 6. The parameter values are
Ci= 4.2x1019 F, C;= 1.9x108 F, Ce= 1.3x10-18 F, R;= 150 MQ, R,=150 MQ, T=10 K and V=10
mV. The program source for this I-V curve can be seen below, which is modified from the
previous source.
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V=0.01;
q0=0;
Zero
temp=10;

vgmin=-0.4;

vgmax=0.4;

NVg=800;

dvg= (vgmax-vgmin) /NVg;
for iv=1:NVg

Vg (iv) =vgmin+iv*dvg;

)

program source

Nmin=-20;
Nmax=20;
dot)

for ne=1:Nmax-Nmin
n=Nmin+ne;

°

o°

o\°

o°

o° o o o o

o\°

o°

o\°

o°

o\°

drain voltage (V)
background charge g0 is assumed to be

temperature T (K)

gate voltage minimum Vmin (V)

gate voltage maximum Vmax (V)

number of grid from Vgmin to Vgmax

gate voltage increment of each grid point
loop start for gate voltage

drain voltage in each grid point

% Note that loop end for drain voltage is located in the end of this

minimum number of N (charge number in dot)
maximum number of N (charge number in

loop start for N
N charge number in dot

% Calculation of AF in equations (25a) and (25b)
dFlp=g/ctotal* (0.5*g+ (n*g-g0) -
dFln=g/ctotal* (0.5*g- (n*g-g0) + (c2+cg) *V-cg*Vg (iv)
dF2p=qg/ctotal* (0.5*g- (n*g-qg0) -

(c2+cg) *V+cg*Vg (iv)) ;
)

7

cl*V-cg*Vg(iv)) ;

dF2n=g/ctotal* (0.5*g+ (n*g-g0) +c1*V+cg*Vg (iv)) ;

)

20

% Noted that loop end for N is located after calculation of I

15+

10+

current | (pA)

-200

-200 0 200 400

gate voltage VG (mV)

Fig. 6. The current - gate voltage characteristics for SET with the parameter values are C;=
4.2x10-9F, C=1.9x10-18 F, Cg= 1.3x10-18 F, Ry= 150 MQ, R,=150 MQ and T=10 K.The drain

voltage is 10 mV.
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Fig. 7. 3D current - voltage characteristics for the SET. The range of source-drain voltage is
from -100 mV to 100 mV and gate voltage is from -400 mV to 400 mV.

The current is a periodic function of the gate voltage Vi because the tunneling of one
electron in or out of the dot is induced by the gate voltage. This periodic oscillations, which
is also known as Coulomb oscillation, is the basis of the SET operation. In order to
understand the overall of I-V characteristics, 3D plot is made as shown in Fig. 7. The
Coulomb blockade region appears at very low source-drain voltage. The Coulomb blockade
can be removed by the changing of gate voltage from inside Coulomb blockade to the
outside. Outside the Coulomb blockade region, a current can flow the between the source
and drain. At a given source-drain voltage V, the SET current can be modulated by gate
voltage V,. By sweeping the gate voltage, the currents oscillate between zero (Coulomb
blockade) and non-zero (no Coulomb blockade), as shown in Fig. 6. The periodicity of the
current is e/ C, along the gate voltage axis. Simulation results presented here reproduce the
previous studies of the SET (Takahashi et al., 1995; Saitoh et al., 2001; Wolf et al., 2010; Sun
et al., 2011; Lee et al., 2009), indicating that the simulation technique can be used to explain
the basis of the SET.

7. Conclusion

This chapter has presented a numerical simulation of the single electron transistor using
Matlab. This simulation is based on the Master equation method and is useful for both
educational and research purposes, especially for beginners in the field of single electron
devices. Simulated results produce the staircase behavior in the current-drain voltage
characteristics and periodic oscillations in current-gate voltage characteristics. These results
reproduce the previous studies of the SET, indicating that the simulation technique achieves
good accuration. The resulting program can be also integrated into an engineering course on
numerical analysis or solid-state physics.
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in Low-Pressure Discharge in Mixtures of
Helium and Xenon with lodine Vapours
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1. Introduction

Due to ecological problems related to the utilization of gas-discharge ultraviolet (UV)
mercury vapour lamps widely used in lighting technology, photochemistry, and
photomedicine, there arises a need for developing new mercury-free sources of UV
radiation using electron bands of rare-gas monohalides and halogen molecules as well as
spectral lines of their atoms (Lomaev et al., 2003). The most high-power mercury-free lamps
are UV emitters with “chlorine - noble gas” active media emitting on transitions of the
excimer molecules XeCl (308 nm) and KrCl (222 nm). The use of aggressive chlorine
molecules in the gas mixtures of such emitters results in a comparatively low mixture life (1-
100 hours), which impedes their wide application in various optical technologies. It is
mainly due to the absorption of chlorine by open metal electrodes (especially strongly
heated cathode) and its heterophase chemical reaction with a quartz discharge tube
accompanied by the formation of polymer compounds (chlorosiloxanes).

That is why the replacement of chlorine molecules by less aggressive iodine ones in the
working media of excilamps represents an urgent task. Ultraviolet radiation of glow
discharge plasma in mixtures of helium with iodine vapours that is still transparent to air is
mainly concentrated in the spectral ranges 175-210 nm and 320-360 nm. The mixture life of
such lamps reaches 103 hours (Lomaev & Tarasenko, 2002; Shuaibov et al., 2005a, 2005b).
The use of the He-Xe-I; active medium in a glow discharge lamp also allows one to obtain
emission of the excimer molecule Xel(B-X) (253 nm) (Shuaibov, 2004 et al.). Moreover, of
special interest is the fact that the wavelength of this transition is close to that of the most
intense spectral line of the mercury atom in low-pressure gas-discharge lamps, which is
used in a number of optical technologies. The basic spectral lines of the iodine atom (183.0,
184.5, 187.6, and 206.2 nm) (Liuti & Mentall, 1968) are also close to those of the mercury
atom (184.9, 194.2, 202.7, and 205.3 nm) now used in the corresponding low pressure UV
emitters.

In this connection, it is important to optimize output characteristics of helium-iodine and
xenon-iodine gas discharge emitters. The kinetics of plasmachemical processes in the gas
discharge plasma in mixtures of noble gases with iodine molecules was till now studied
only for high-pressure emitters excited by a barrier discharge (BD) in krypton-iodine and
xenon-iodine mixtures (Zhang & Boyd, 1998, 2000). The conditions of BD plasmachemical
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reactions that lead to the formation of excited iodine atoms and molecules as well as xenon
iodide molecules differ substantially from those in a longitudinal low-pressure glow
discharge. Therefore, the results of these calculations cannot be used to analyze the
efficiency and physics of the processes taking place in excimer glow discharge lamps. The
parameters and kinetics of plasmachemical processes in low-pressure plasma in mixtures of
noble gases with iodine vapors were not studied till now.

In order to optimize the output characteristics of gas-discharge lamps based on helium-
iodine and xenon-iodine mixtures, we have carried out numerical simulation of plasma
kinetics in a low-pressure discharge in the mentioned active media. This chapter reports on
systematic studies of the electron-kinetic coefficients in mixtures of helium and xenon with
iodine vapors as well as in the He:Xe:l, mixture. The mean electron energies and drift
velocities in the discharge are calculated. A comparative analysis of the distributions of the
power introduced into the discharge between the dominant electron processes in helium-
iodine and xenon-iodine mixtures is performed. The rates of electron-molecular processes
were computed based on the numerical solution of the Boltzmann equation in the two-term
approximation that provides a good description of the electron energy distribution function
in the case where the electron thermal velocity considerably exceeds the drift one (which is
true in all experiments).

The plasma kinetics in the active medium of the excimer UV emitter was numerically
simulated by solving a system of kinetic equations for neutral, excited, and charged
components together with the Boltzmann equation for the electron energy distribution
function and the supply circuit equation. The kinetic model used in the calculation included
more than 60 elementary processes. The simulation of the plasma kinetics allowed us to
obtain the relation between the emission intensities of atomic and molecular iodine in the
helium-iodine mixture as well as to analyze the effect of xenon on the relation between the
emission intensities of iodine atoms and molecules as well as xenon iodide molecules in the
mixture including xenon.

Based on the analysis of plasmachemical processes running in the active medium of the
helium-iodine excimer lamp, we studied the dependences of the emission intensities of
atomic and molecular iodine on the total pressure of the mixture and revealed the basic
mechanisms of the pressure influence on the population kinetics of the emitting levels. The
effect of the halogen concentration on the emission intensity of atomic and molecular iodine
is investigated and the main factors resulting in the decrease of the emission intensity with
varying halogen content are found.

The performed numerical simulation yielded good agreement with experiment, which first
of all testifies to the right choice of the calculation model and elementary processes for
numerical simulation.

2. Numerical simulation

2.1 Electron energy distribution function

The electron energy distribution function is of major importance for understanding
processes running in the active medium of a gas discharge. It determines parameters
significant for the analysis of the plasma kinetics, such as rates of elementary electron-
impact processes in the discharge, mean electron energy and mobility. In the case of not too
strong fields, where the thermal electron velocity considerably exceeds their drift velocity,
the distribution function can be expanded in terms of the parameter characterizing its
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anisotropy. Restricting oneself to two terms of such an expansion and considering elastic
and inelastic collisions of electrons with neutral particles, one arrives at the Boltzmann
equation in the two-term approximation (Golant, 1980):
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Here, f stands for the symmetric part of the electron energy distribution function, ¢, n,,
and m and the electron energy, density, and mass, correspondingly, E is the electric field
in the discharge, T denotes the gas temperature (eV), N is the total gas concentration, N;,
M;, and Qrp; are the concentrations of atoms or molecules, their masses and momentum-
transfer cross sections, and e=1.602 10-12 Erg/eV. The function f(e) is normalized by the
condition

;fel/ 2f(e)de = 1. @

The integral Sy describing inelastic electron collisions with atoms and molecules has the
form

N
SeN = %W][(S +si)Qi (s+si)f(s+si)—sQi (s)fO(s)} —%SQ‘U (e)f(e), (3)

where Q; and ¢ denote the cross sections and energy thresholds of the processes of electron-
impact excitation, ionization, or dissociation of neutral species, correspondingly, while Q, is
the cross section for electron attachment to electronegative molecules.

The solution of Eq.(1) was obtained using the Thomas algorithm for tridiagonal matrices.
Electron-electron collisions were not taken into account when calculating the distribution
function due to the fact that their effect on the electron distribution at low electron densities
(ne/N >109) is negligible (Soloshenko et al., 2007).

A considerable part of iodine molecules in a gas discharge dissociates into atoms (Barnes &
Kushner, 1998). That is why the Boltzmann equation for the electron energy distribution
function was solved under the assumption that the halogen component in the discharge is
presented by I, molecules (50%) and I atoms (50%) in the ground state.

One of the difficulties accompanying numerical modeling of the plasma kinetics in iodine-
containing mixtures is the absence of both experimental and theoretical data on electron-
impact excitation cross sections of iodine molecules. This fact is confirmed, in particular, by
the bibliographic study of data on electron collisions with halogen molecules published in
the 20th century performed by the National Institute for Fusion Science (Hayashi, 2003). That
is why it is now generally accepted to allow for these processes using approximations of
various kinds. For example, in (Avdeev et al.,, 2007), where the authors investigated the
kinetics in the krypton-iodine mixture, the cross sections for inelastic electron collisions with
iodine molecules were approximated based on general theories described in (Smirnov,
1967). In (Boichenko & Yakovlenko, 2003), the rates of electron-impact excitation and step
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ionization of iodine molecules were assumed to be the same as the corresponding rates for
its atoms.

The solution of the Boltzmann equation and the simulation of the plasma kinetics in the
active medium of an UV emitter were carried out with regard for three excited levels of the
iodine molecule. As will be shown below, they play the key role in the formation of emitting
iodine atoms and molecules. The excitation cross sections for these levels were introduced as
those similar to the excitation cross section of the emitting state of the iodine atom shifted by
the excitation threshold for each specific level of the iodine molecule. The cross section for
electron dissociative attachment to iodine molecules was taken from (Tam & Wong, 1978),
whereas the cross sections of the other electron collisions with iodine atoms and
molecules were analogous to those used in (Avdeev et al., 2007). The processes of electron
interactions with noble gas atoms are well studied. The cross sections for elastic and
inelastic electron collisions with helium atoms are presented in (Rejoub et al., 2002; Saha,
1989; Cartwright & et al., 1992) and those with xenon atoms can be found in (Rejoub et al.,
2002; NIFS; Hyman, 1979).

Knowing the electron energy distribution function, it is possible to analyze the distribution
of the power introduced into the discharge among the most important electron processes.
As was shown in (Soloshenko, 2009), the power spent for an electron-impact inelastic
process with the threshold energy ¢,; can be presented as
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where Q. is the cross section of the corresponding inelastic process. The power spent for gas
heating is described by the relation
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where Qr; is the momentum-transfer cross section for electron scattering by atoms and
molecules of the mixture. So, the specific power spent for an electron process has the form

W..
n; = —a (6)
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2.1 Plasma kinetics in mixtures of helium and xenon with iodine vapours

The time evolution of the concentrations of neutral, charged, and excited particles in the
active medium of the excimer UV emitter was found by solving the system of kinetic
equations

dN;
zk N +2kl]lN N +. @

dt i J

where N; are the concentrations of the corresponding components of the mixture and ki;, ki
are the rates of kinetic reactions. In this case, the rates of inelastic electron-impact processes
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represent variable quantities due to their dependence on the electron energy distribution
function:

kip = %ZeQi(e)f(e)ds. (8)

In turn, the electron energy distribution is determined by the electric field in the discharge.
That is why the construction of a self-consistent model of kinetic processes in the excimer-
lamp medium requires the joint solution of the supply circuit equation, the Boltzmann
equation, and the system of kinetic equations for the components of the medium.

The plasma kinetics was calculated for an excimer lamp operating on the helium-iodine and
xenon-iodine mixtures as well as the ternary helium-xenon-iodine mixture in the pressure
range 1-10 Torr. The diagram of the experimental set-up whose parameters were used for
the numerical simulation will be given in what follows. It was assumed that the UV emitter
is supplied by a constant voltage circuit with the ballast resistance R;=10* Ohm and the
charging voltage Uy=6kV. The discharge resistance represents a variable quantity
depending on the electron density in the discharge n. and their mobility p:

Rold 1 d o
GS enple S
where o stands for the conductivity of the active medium, d is the interelectrode distance,
and S is the electrode area.
The emission of UV lamps based on helium-iodine mixtures includes a spectral line
corresponding to the electron transition of iodine atoms with a wavelength of 206 nm and
the I(D’—A") molecular band with a wavelength of 342 nm. The diagram of the energy
levels of atomic and molecular iodine is presented in Fig.1 (Barnes & Kushner, 1996). Solid
lines mark the states taken into account in the described kinetic model.
It was already noted that, due to the absence of experimental or theoretical data on electron
excitation cross sections of iodine molecules, they were introduced as those of the emitting
state of the iodine atom shifted by the excitation threshold for each specific level of the L*
molecule. The effect of the inaccuracy in the values of these cross sections was estimated by
means of test calculations of the plasma kinetics with the use of the cross sections twice larger
and lower than those accepted in the kinetic model. It was found out that the variation of the
excitation cross section of the I»(D) state does not considerably influence the emission power of
both atomic and molecular iodine - their change is less than 1%. The variation of the excitation
cross section of the I(D’) level results in the 8% and 35% change of the emission powers of
atomic and molecular iodine, correspondingly. In the case of variation of the excitation cross
section of the I»(B) level, the emission powers of atomic and molecular iodine change by 35%
and 13%, correspondingly. Such a result is acceptable with regard for the fact that the general
behavior of the theoretical curves did not change in the case of variation of the cross sections.
Molecular iodine effectively dissociates into atoms due to a number of elementary processes.
Its recovery to the molecular state takes place at the walls of the discharge chamber (Barnes
& Kushner, 1998). That is why the kinetic model takes into account the diffusion of iodine
atoms to the walls. For this purpose, we include an additional process of conversion of
atomic iodine to the molecular form taking place with the rate equal to the diffusion loss
frequency of iodine atoms. The diffusion loss frequency was estimated as D/A2? (Raizer,
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1991), where D is the diffusion coefficient and A is the characteristic length scale. For a
discharge tube representing a long cylinder with radius ro, A = r9/2.4 (Raizer, 1991). The
diffusion coefficient in the mixture He-I, = 130-130 Pa was taken equal to 100 cm?/s. In the
case of variation of the quantitative composition of the active medium, the diffusion
coefficient changed proportionally to the mean free path of iodine atoms in the mixture.
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Fig. 1. Energy level diagram in the UV emitter

The full set of reactions used for the simulation of the plasma kinetics in the mixture of
helium with iodine vapours is presented in Table 1 (Shuaibov et al., 2010a). As was already
noted, the rates of electron-impact processes 1-11 were calculated at every time moment
from the electron energy distribution function. The rates of ion-ion recombination (reactions
24-25) were calculated as functions of the pressure according to the Flannery formulas
(McDaniel & Nighan, 1982). The rates of the other reactions used in the kinetic scheme were
taken from (Avdeev et al.,, 2007; Boichenko & Yakovlenko, 2003; Kireev & Shnyrev, 1998;
Stoilov, 1978; Baginskii et al., 1988).

The addition of xenon to the active medium of a helium-iodine UV-emitter results in the
appearance of an additional radiation band at 253 nm corresponding to the B—X transition
of Xel* excimers (Fig.1). Excimer molecules of rare gas halides (RX*) are generated in the
discharge due to two basic algorithms. One of them is the ion-ion recombination (R*+X")
that runs in the presence of a third body and is therefore of minor importance under the
used low-pressure conditions and the other is the so-called harpoon reaction between an
excited rare gas atom and a halogen molecule (R*+X;). However, as was shown by detailed
studies (Barnes & Kushner, 1996, 1998), the harpoon reaction does not play a significant role
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in the formation of Xel* excimers. The main channel of their generation at pressures <5 Torr
is the reverse harpoon reaction between a xenon atom in the ground state and a highly
excited I** levels. The specific iodine levels participating in the reverse harpoon process
were not identified. Nevertheless, it is clear that neither of the states considered in our
kinetic scheme has enough energy to provide the excitation of the Xel* molecule.

Ne Reaction Rate, cm6/s, cm3/s, s

1 e+He > He*+e

2 etHe > He*+e+e

3 etl, > Iz(B)"'e

4 e+, > IQ(D)'H’.‘

5 e+l > IH(D')+e

7 otl, > Lrrote Calculated from Fhe
= Boltzmann equation

7 et > 1 +1

8 e+l > I[+I+e

9 e+l > I*+e

10 e+l > [*+ete

11 et+l* > [*+ete

12 I(B)+He > I+I+He 1.0e-11

13 I(D)+He > I;(D")+He 1.0e-12

14 I(D)+], > I(D')+1» 1.5e-11

15 L(D)+] > I(D')+I 1.5e-11

16 Iz(D)> Ir+hv 1.6e-8

17 I(D')+He > I, +He 1.0e-12

18 LD)+L>L+D 1.0e-11

19 L(D')+1 > 1, +1 1.0e-11

20 I(D’)> I,+hv (342 nm) 7.0e-9

21 I* > 1+ hv (206 nm) 3.5e-9

22 [+I+M > ,+M 3.0e-33

23 I*+I, > I(D)+I 1.3e-9

24 I+ +M > I,(D')+M Calculated by the

25 | L+l +M > I(D)+I+M Flannery formulas

26 He*+2He > Hey*+He 4.3e-34

27 Het+2He > He,*+He 8.0e-32

28 He*+He* > He*+He+te 2.0e-10

29 Hey*+Hey* > Hepy*+2He+e 5.0e-10

30 Hey* > He+He 3.6e8

31 Hey*+e > HetHe+e 3.8e-9

32 Hey*+e > He+He 1.3e-11

33 21> 1, Kais

Table 1. Kinetic reactions in the He-I, mixture
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Thus, there are no ideas about both the levels of molecular iodine whose excitation
contributes to the formation of Xel* and the rate of the reverse harpoon reaction. That is
why, when calculating the kinetics in the He:Xe:I> medium, we introduced an additional
excited level I,** with the energy sufficient to excite the Xel molecule that took part in the
reverse harpoon reaction (Fig. 1). Its rate was taken equal to the characteristic rate of the
harpoon reaction (1.0e-9 cm3/s) (Rhodes, 1979), whereas the excitation cross section of the
L** level was chosen so that to provide the fraction of emission in the Xel*(B—X) band close
to the experimental one. Such an approach allows us to analyze the effect of xenon on the
emission intensities of atomic and molecular iodine. The set of reactions with participation
of xenon is listed in Table 2. The used literature sources were the same as in Table 1.
Numerical simulation of the plasma kinetics in mixtures of helium and xenon with iodine
vapours allowed us to obtain the relation between the emission intensities of iodine atoms
and molecules, to calculate their dependences on the buffer gas pressure and halogen
concentration, and to analyze the effect of xenon on the emission intensity of the medium.

3. Results of numerical simulation

3.1 Electron energy distribution function and electron-kinetic coefficients

Figure 2 presents the electron energy distribution functions calculated in the He-I>-I= 800-50-
50 Pa and Xe-I>-I= 800-50-50 Pa mixtures at various values of the reduced electric field in the
discharge E/N (50-300 Td) (Shuaibov et al., 2009).

f(e), eV f(e), eV’
b
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0,04 4

0,02 4

T T T T T T T T 1 0,00
0 2 4 6 § 10 12 14 16 18 20 0

Fig. 2. Electron energy distribution functions calculated in the He-I>-I= 800-50-50 Pa (a) and
Xe-I>-I= 800-50-50 Pa (b) mixtures at E/N =50 (1), 100 (2), 150 (3), 200 (4), and 300 (5) Td

One can see that the replacement of the helium buffer gas by xenon results in the decrease of
the portion of high-energy electrons in the discharge. It is due to the fact that the excitation
and ionization thresholds of xenon atoms (8.3 eV and 12.1 eV, correspondingly) are
significantly lower than those of helium (19.8 eV and 22.5 eV), therefore the tail of the
distribution function in the xenon mixture is cut off at lower energies.

The drift velocities and the mean electron energies calculated as functions of the electric field
in the discharge in the studied mixtures are shown in Fig.3 (Shuaibov et al., 2009). One can see
that the increase of the reduced field from 50 to 300 Td results in the linear growth of the drift
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Ne Reaction Rate, cm6/s, cm3/s, s
1 et+Xe > Xe*+e

2 et+Xe > Xettete Calculated from the
3 et+Xe* > Xet+ete Boltzmann equation
4 et I, > [**+e

5 I(B)+Xe > [+]+Xe 2.0e-10
6 I(D)+Xe > In(D')+Xe 6.0e-12
7 I(D)+Xe > I,+Xe 1.0e-12
8 IL**+He > [,+He 1.0e-12
9 L*¥*+ > I+ I 1.0e-12
10 L**+1 > I+] 1.0e-12
11 L**+Xe > Xel*+ 1 1.0e-10
12 Xet+ [-+M > Xel*+M 4.0e-26
13 Xel*+ I, > Xe+ I +1I 5.0e-10
14 Xel*+Xe > Xet+Xe+] 9.2e-12
15 Xel* > Xe+I+hv (253 nm) 1/1.2e-8
16 Xet+Xe > Xex*+ 1.0e-31
17 Xext+e > Xe*+Xe 2.44e-7
18 Xeyt+e > Xet+Xete 2.44e-7
19 Xe*+] > Xe+ I* 1.0e-10
20 Xey*+I > Xet+Xe+ I* 1.0e-10
21 Xel*+I, > Xe + 31 1.0e-9
22 Xet+He+Xe > Xey*+He 1.3e-31
23 Xet+Xe+Xe > Xex++Xe 3.6e-31
24 He++He+Xe > Hey*+Xe 1.1e-31
25 Xe*+Xe* > Xe+ Xette 5.0e-10
26 Xe*+Xe* > Xert+e 1.1e-9
27 He*+Xe > Xe*+He+e 7.5e-11
28 He*+Xe > Xet+He 1.0e-11
29 Xe*+Xet+Xe > Xex*+Xe 8.0e-32
30 Xe*+Xe+He > Xey*+He 1.4e-32
32 Xey*> Xet+Xe 6.0e7
33 Xex*+ 1> Xe+Xe+ Ir(D') 2.0e-10
34 Xe*+ > Xe+ Ir(D") 2.0e-10
35 21> 1, Kaift

Table 2. Kinetic reactions with participation of xenon in the He-Xe-I mixture

velocity in the He-I>-I medium in the range 107 - 5-107 cm/s, while in the Xe-I>-I discharge,
it changes in the interval 2106 - 8-10¢ cm/s. In this case, the mean electron energy increases
from 5.3 to 8.8 eV (He-I>-I mixture) and from 4.2 to 7.5 eV (Xe-I-I mixture). The highest
mean energies are observed in the helium medium characterized by a pronounced
high-energy tail of the electron energy distribution function. The replacement of helium by
xenon results in the abrupt cut-off the electron distribution at energies close to the xenon
excitation threshold and, correspondingly, reduction of the mean electron energy in the

discharge.
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Fig. 3. Drift velocities (a) and mean energies (b) of electrons in the He:I>-I= 800-50-50 Pa (1)
and Xe:I»-I= 800-50-50 Pa (2) mixtures as functions of the electric field in the discharge

The maximum electron drift velocities are also reached in the helium mixture and fall when
passing to xenon. This fact is explained by a more intense electron scattering by xenon (the
values of the momentum-transfer cross section for electron scattering by xenon atoms in the
energy range 0-25 eV are one-two orders of magnitude higher than the corresponding
characteristics of helium). The more intense electron scattering in xenon results in the
decrease of the velocity of directed motion in this gas.

Tables 3-4 demonstrate the distribution of the power introduced into the discharge among
the most important electron processes (Shuaibov et al., 2010b). They are the reactions of
excitation and ionization of the rare gases, halogen atoms and molecules as well as
dissociation and dissociative attachment of electrons to iodine molecules. The processes of
stepwise ionization of the rare gases and iodine were neglected. It is explained by the facts
that the concentrations of excited atoms and molecules strongly depend on the time and that
their values are several orders of magnitude smaller than the concentrations of the primary
components of the mixture (He, Xe, I, and I).

One can see that, due to very high excitation and ionization thresholds of helium atoms, the
prevailing portion of the power in the He-I,-I mixture is spent for reactions with
participation of the halogen. Insignificant power costs for the process of electron attachment
to iodine molecules are explained by the very low threshold energy of this process close to
zero. An increase of the electric field results in the growth of the number of fast electrons
and the rising role of the processes of ionization of iodine as well as excitation and
ionization of helium.

In the xenon-based mixture, the portion of the power spent for excitation and ionization of
the rare gas is much higher. The comparable thresholds of the processes with participation
of xenon and iodine result in the fact that, at low electric fields, the power is distributed
among them nearly equally. An increase of the electric field results in the growth of the
portion of the power spent for processes with participation of the rare gas.

The highest rate is observed for the process with the smallest threshold (stepwise ionization
of xenon), while the reactions with the lowest rates are those of helium and xenon
ionization. The rates of all the processes grow with increasing electric field. The only
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- 5 s | 5§ | £ 5| 5 | s
<1 3 g d g 7 g g z
M= v v © ks s = v =2

T T = - o — - =
50 0.45 8.28e-5 129 9.56e-2 42 9.14 10 25.1
100 1.99 5.18e-4 7.6 3.01e-2 32 17 7.55 33
150 2.72 7.55e-4 6.37 2.08e-2 29 20 6.72 35
200 3.04 8.63e-4 5.92 1.79e-2 28 20.8 6.4 36
250 3.20 9.19%e-4 5.71 1.66e-2 27 21.3 6.25 36
300 3.30 9.51e-4 5.6 1.59%-2 27 21.6 6.16 36

Table 3. Relative power costs for electron processes in the mixture He-I>-1 = 800-50-50
Pa (%)

- = | 5 | £ £ | 5| s
Z | % 5 g 2 £ 3|
=5 by 5 o " 5 = 9] 2
= 3 = = < = ~ —
50 58 0.163 17 0.44 17.6 1.12e-2 6.52 0.48
100 70 2.68 7.66 0.11 13.7 0.14 412 1.57
150 72 6.8 4.75 5.05e-2 10.7 0.33 3.0 2.22
200 71 10.8 3.38 2.88e-2 8.83 0.49 2.36 2.59
250 70,1 14.3 2.59 1.87e-2 7.52 0.65 1.95 2.80
300 68.6 17.3 2.09 1.31e-2 6.56 0.78 1.66 2.94

Table 4. Relative power costs for electron processes in the mixture Xe-I>-I = 800-50-50 Pa (%)

exclusion is the dissociative attachment of electrons to iodine molecules that has the
practically zero threshold and, correspondingly, does not depend on the number of fast
electrons in the discharge.

The variation of the electric field in the range 50-300 Td results in the growth of the majority
of the reaction rates within one order of magnitude. However, the helium ionization rate
increases by four orders of magnitude owing to its strong dependence on the number of
high-energy electrons.

The excitation and ionization rates of the rare gas in the xenon-iodine mixture are evidently
higher than in the helium-iodine one due to lower threshold energies of these processes in
xenon. As regards the reactions with participation of molecular and atomic iodine, their
rates in the helium mixture are noticeably larger than in the xenon-based medium. It is
explained by a much higher number of fast electrons in the discharge in helium that provide
effective excitation, ionization, and dissociation of iodine.
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Tables 5 and 6 present the values of the rates of the most important electron processes in the
considered mixtures calculated as functions of the electric field in the discharge using Eq.(8)
(Shuaibov et al., 2010b).

E/N, Td 50 100 150 200 250 300

He excitation 9.91e-13 1.36e-11 2.73e-11 3.6e-11 4.12e-11 4.44e-11
He ionization 1.62e-16 3.11e-15 6.66e-15 8.99e-15 1.04e-14 1.13e-14
I, excitation 1.77e-9 3.22e-9 3.97e-9 4.35e-9 4.56e-9 4.69e-9
I, attachment 6.71e-10 6.5e-10 6.61e-10 6.70e-10 6.76e-10 6.8e-10
I, dissociation 3.57e-9 8.45e-9 1.12e-8 1.26e-8 1.34e-8 1.39e-8
I, ionization 5.35e-10 3.09e-9 5.25e-9 6.51e-9 7.24e-9 7.7e-9
I excitation 1.08e-9 2.41e-9 3.16e-9 3.54e-9 3.76e-9 3.88e-9
T ionization 1.69¢-9 6.9e-9 1.07e-8 1.29e-8 1.41e-8 1.49e-8

Table 5. Rates of electron processes in the mixture He-I,-I= 800-50-50 Pa

E/N, Td 50 100 150 200 250 300

Xe excitation 7.42e-11 3.35e-10 7.33e-10 1.24e-9 1.84e-9 2.52e-9
Xe ionization 1.44e-13 8.81e-12 4.76e-11 1.29e-10 2.58e-10 4.37e-10
Xe stepwise
ionization
I, excitation 2.30e-7 2.68e-7 2.92e-7 3.11e-7 3.26e-7 3.39e-7
I, attachment 7.51e-10 7.1e-10 6.84e-10 6.66e-10 6.52e-10 6.41e-10
I, dissociation 3.66e-10 1.05e-9 1.76e-9 2.47e-9 3.18e-9 3.88e-9
I, ionization 1.59e-13 7.61e-12 3.69e-11 9.54e-11 1.88e-10 3.17e-10
I excitation 1.65e-10 3.88e-10 6.01e-10 8.06e-10 1.0e-9 1.20e-9
I ionization 7.82e-12 9.54e-11 2.88e-10 5.72e-10 9.37e-10 1.37e-9

Table 6. Rates of electron processes in the mixture Xe-I>-I= 800-50-50 Pa

2.3e-7 2.68e-7 2.92e-7 3.11e-7 3.26e-7 3.39%-7

3.2 Dependence of the emission intensities on the rare gas pressure

The analysis of the plasma kinetics in the mixture of rare gases with iodine vapours
performed with regard for the described regularities makes it possible to study the effect of
the buffer gas pressure on the emission intensities of molecular and atomic iodine. The
results of the calculations performed for the helium-iodine mixture at the iodine
concentration equal to 130 Pa are shown in Fig.4 (Shuaibov et al., 2010a).

One can see that the emission intensities of the 206-nm spectral line and the 342-nm
molecular band of iodine depend on the helium pressure in the opposite ways. The emission
intensity in the molecular band decreases with increasing rare gas pressure, while that in the
260-nm atomic line grows.

Excited iodine molecules I»(D’) are generated in the discharge due to direct electron
impact excitation. The rate of this process is determined by the electron energy
distribution function and grows with increasing parameter E/N. Thus, an increase of the
pressure of the mixture results in the decrease of the rate of formation of emitting I»(D’)
molecules in the discharge.
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As was demonstrated in (Sauer, 1976; Baboshin, 1981), another important channel of
generation of I(D’) molecules is the excitation transfer from the above-lying level I»(D)
colliding with atoms and molecules of the active medium. However, at the considered
pressures, the probability of radiation decay of the I»(D) state is much higher than the
probability of its collision with other particles, that is why this channel makes practically no
contribution to the formation of emitting I>(D") molecules.
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Fig. 4. Emission intensities of the 206-nm spectral line () and 342-nm molecular band (w) of
iodine as functions of the helium pressure

A considerable part of iodine exists in the discharge in the dissociated state, which is
confirmed by a high intensity of the 206-nm spectral line registered in a number of works
(Avdeev, 2007; Shuaibov et al., 2005b; Zhang & Boyd, 2000). Measurements performed in
(Barnes & Kushner, 1996, 1998) for Xe-I, mixture at pressures close to those used in our
work have demonstrated that the fraction of iodine molecules dissociating in the discharge
exceeds 90%. Moreover, the minimum concentration of I, molecules was registered at the
axis of the discharge tube and the maximum one - close to the walls where iodine recovered
to the molecular state.

Molecular iodine decays into atoms mainly owing to the processes of direct electron-impact
dissociation (Table 1, reaction 8) and predissociation of the excited I»(B) state due to
collisions with particles of the mixture (Table 1, reaction 12). The rate of the former reaction
is determined by the form of the electron energy distribution function and decreases with
increasing rare gas pressure, whereas the effectiveness of the latter process grows in direct
proportion to the pressure.

Thus, an increase of the helium pressure in the He-I, glow discharge has a multiple effect on
the efficiency of production of iodine atoms. The rate of electron-impact dissociation of the
ground state of the iodine molecule falls due to the change of the electron energy
distribution function. The rate of formation of the I>(B) excited state also decreases. At the
same time, the efficiency of collisional predissociation of the I>(B) level abruptly increases,
which appears determinative for the resulting effect.
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Another important consequence of the increase of the rare gas pressure is the deceleration of
the diffusion motion of iodine atoms to the walls of the discharge chamber, which results in
the less efficient recovery of molecular iodine. Thus, with increasing pressure in the working
medium of the halogen lamp, the relation between the concentrations of excited iodine
molecules and atoms (and consequently powers of emission from the levels I(D’) and I*)
changes in favor of the latter.

3.3 Dependence of the emission intensities on the halogen pressure

With variation of the iodine concentration in the mixture, the emission intensities in the
atomic 206-nm line and the 342-nm molecular band pass through a maximum (Fig.5). At
p(I2) <200 Pa, the emission intensities grow with increasing halogen concentration, while at
p(I2) > 200-230 Pa, they sharply fall to zero.
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Fig. 5. Emission intensities of the spectral line of atomic iodine at 206 nm () and molecular
band at 342 nm I(D’—A") (m) (a) and total emission intensity (b) as functions of the iodine
concentration in the He-I, mixture at p(He)= 400 Pa

An increase of the iodine concentration is accompanied by the rise of the discharge voltage
and reduction of the electron density in the discharge. This fact is caused by the effect of
iodine on the electron energy distribution function. At low iodine concentrations, the
distribution function is determined by the helium buffer gas characterized by large
thresholds of excitation and ionization (19.8 eV and 22.5 eV, correspondingly). The addition
of iodine to the active medium results in the cut-off of the distribution function at lower
energies due to the smaller thresholds of its excitation and ionization as well as the increase
of the total pressure of the mixture. Moreover, the rate of dissociative attachment of
electrons to I, molecules (with a near-zero threshold) weakly depends on the iodine
concentration, while the ionization rate determined by the tail of the distribution function
sharply falls with increasing iodine content (Fig.6). The discharge voltage is determined by
the balance of the ionization and attachment processes. That is why in order to maintain a
discharge in a medium with a heightened halogen content, one should apply a larger
voltage, which results in the decrease of the discharge current and, correspondingly,
electron density.
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The decrease of the electron concentration reduces the efficiency of generation
of radiating particles in the discharge resulting in the decrease of the emission intensities
both in the atomic line and in the molecular band of iodine. As one can see from Fig.5,
the emission maximum in the case of the 342-nm band is reached at higher iodine
pressure ~ 230 Pa, whereas the emission intensity of atomic iodine starts falling already at
p(2) > 200 Pa. It is explained by the fact that the generation of excited iodine atoms
is more sensitive to the electron density in the medium because it runs via two electron
processes - electronic excitation of iodine molecules to the I»(B) level followed by decay
into atoms (or direct electron-impact dissociation of molecular iodine) and consequent
excitation of iodine atoms to the radiating level. Radiating I>(D’) molecules are formed
due to direct electronic excitation of molecular iodine. If the iodine concentration in
the mixture exceeds 400 Pa, then the voltage falling across the discharge gap appears
insufficient for the breakdown and the emission intensities abruptly fall to zero.
The maximum of the summary emission intensity is reached at the iodine pressure equal
to 200 Pa.
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Fig. 6. Rates of dissociative attachment (@) and ionization (©) of iodine molecules as
functions of the iodine concentration in the He-I, mixture at p(He)= 400 Pa and E =150
V/cm

Taking into account the fact that the emission intensities of atomic and molecular iodine
reach a maximum at different iodine concentrations, it is evident that the variation of its
content in the mixture will result in the change of the relation between the emission
intensities at 342 and 206 nm. With increasing iodine concentration, the relative emission
intensity in the molecular band grows, and in the atomic line - falls. The calculated curve is
given in Fig.7.

3.4 Effect of xenon on the emission of the excimer lamp

The presence of xenon in the active medium of the helium-iodine UV emitter results in the
appearance of the additional emission band at 253 nm corresponding to the B—X transition
of the Xel* excimer. As was already noted, Xel* molecules are generated in the discharge
owing to the reverse harpoon reaction between a xenon atom in the ground state and some
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highly excited level I,** (Table 2, reaction 11). For today, the levels of molecular iodine
participating in the reverse harpoon reaction are not identified. However, the analysis of the
energy state diagram in the Xe:I»:I mixture (Fig.1) testifies to the fact that neither of the states
important for the kinetics in the helium-iodine medium has enough energy to excite the Xel*
excimer molecule. It means that the addition of xenon does not result in the appearance of
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Fig. 7. Relative emission intensity in the 342-nm molecular band as a function of the iodine
concentration in the He-I, mixture at p(He)= 400 Pa

additional channels of decay of the I;(D’) and I»(B) states and influences their kinetics only
through the electron distribution function. That is why, introducing a highly excited I»**
state with the minimum energy sufficient for the formation of the Xel* molecule and
choosing its excitation cross section so that to provide the fraction of the emission intensity
in the Xel*(B—X) band close to that observed experimentally, it is possible to analyze the
effect of the xenon admixture on the emission intensities of atomic and molecular iodine.
The addition of xenon changes the plasma kinetics in three ways. The first one is the
variation of the electron energy distribution function, namely, the decrease of the number of
fast electrons in the discharge. The smaller number of high-energy electrons results in the
reduction of the rates of the electron processes responsible for the formation of both excited
atoms and molecules of iodine. However, the other two factors facilitate the generation of
atomic iodine. One of them is the increase of the efficiency of decay of the excited I>(B) level
in its collisions with buffer gas atoms. The rate of this process in xenon is higher than in
helium by a factor of 20. The second process is the decrease of the diffusion rate of iodine
atoms to the walls of the discharge chamber due to the fact that the larger radius of xenon
atoms as compared to helium ones provides the decrease of the mean free path of iodine
atoms in the helium-xenon medium. These two factors result in the increase of the
concentration of excited iodine atoms in the discharge.

According to the results of numerical simulations, the relation between the emission
intensities of atomic and molecular iodine in He-[,=400:130 Pa mixture amounts to W(206.2
nm)-W (342 nm) = 56-44%, whereas in the He-Xe-1,=400:130:130 Pa medium, it changes to
W(206.2 nm)-W (342 nm)=55:31%. Thus, the addition of xenon results in the decrease of the
relative emission intensity of the 342-nm molecular band.
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The dependences of the emission intensities on the concentration of iodine vapours in the
mixture including xenon (p(He)-p(Xe) = 400-130 Pa) are qualitatively the same as those
calculated for the He-I> medium. The maximum emission power in the 206-nm spectral line
is reached at p(I2)=230 Pa, while in the 342-nm band - at p(I2)=170 Pa. Moreover, the
maximum iodine concentration, at which the discharge is still initiated, is lower than in
helium and amounts to 240 Pa. Such a difference is related to the fact that the ionization
rates in the helium-iodine mixture at equal iodine concentration are lower than in the
helium one, that is why the maintenance of the discharge requires higher voltages.

4. Comparison with experiment

The results of numerical simulations were compared to the data of experimental studies
reported in a cycle of works (Shuaibov et al., 2004, 2005b, 2009).

A longitudinal glow discharge in helium and xenon rare gases was initiated in a cylindrical
discharge tube made of quartz transparent to A = 190 nm. The distance L between the
cylindrical nickel electrodes was equal to 50 cm. The thickness of the tube walls and its inner
diameter amounted to 1 mm and 1.4 cm, correspondingly. Crystalline iodine of high purity
was located in a special appendix behind the anode of the discharge tube. The diagram of
the experimental set-up is shown in Fig.8.

[

Fig. 8. Experimental set-up used for obtaining the glow discharge in mixtures of rare gases
with iodine vapours: 1 - electrodes, 2 - quartz discharge tube, 3 - high-voltage rectifier, 4 -
ballast resistor, 5 - iodine crystals, 6 - container for iodine, 7 - ammeter

The emission spectrum of the helium-iodine discharge included the spectral line of atomic
iodine at 206 nm and a molecular band I, (D’-A’") at 342 nm. At the partial helium pressure
equal to 400 Pa, the emission intensities related as W(206.2 nm)-W(342nm) = 52-48 %.
These values are in good agreement with the calculation results: W(206.2 nm)-W(342nm) =
56-44%.

The addition of xenon to the active medium of the UV emitter resulted in the appearance of
the emission band at 253 nm, corresponding to the B—Xtransition of the Xel* molecule. At
p(He)-p(Xe)=400-130 Pa, the emission intensities related as W(206.2 nm)-W (253 nm)-W (342
nm)=54-9-37%. In this case, the numerical computations yield the relation W(206.2 nm)-
W(342 nm)=55:31%. Thus, both experimental and theoretical results testify to the fact that
the addition of xenon to the active medium of the excimer lamp results in the decrease of the
relative emission intensity of the I (D’-A") molecular band, while that of the 206-nm line
remains practically the same.
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The experimentally obtained dependences of the registered emission intensities on the
helium pressure in the He-I, mixture are presented in Fig.9. One can see that, with
increasing helium pressure, the intensity of the molecular band decreases and that of the
atomic line - grows. Such a behavior completely agrees with the results obtained by
numerical simulation of the discharge kinetics in the UV emitter.
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Fig. 9. Experimentally measured emission intensities of 206-nm spectral line (®) and 342-nm
molecular band (m) of iodine as functions of the helium pressure

5. Conclusion

The numerical simulation of the discharge and emission kinetics in excimer lamps in
mixtures of helium and xenon with iodine vapours allowed us to determine the most
important kinetic reactions having a significant effect on the population kinetics of the
emitting states in He:I; and He:Xe:I, mixtures. The opposite behavior of the dependences of
the emission intensities of atomic and molecular iodine on the buffer gas pressure is
explained. The influence of the halogen concentration on the emission power of the excimer
lamp is investigated. The effect of xenon on the relative emission intensities of iodine atoms
and molecules is analyzed. The calculation results are in good agreement with data of
experimental studies, which is an evidence of the right choice of the calculation model and
elementary processes for numerical simulation.
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1. Introduction

The book chapter describes recent progress in the management of laser pulses by means
of optical fibers with smoothly variable dispersion. Nonlinear Schrédinger equation based
numerical simulations give powerful mathematics for optimizing of fiber dispersion for given
task. In the book chapter we use numerical simulations to describe and analyse soliton and
pulse dynamics in three kind of fibers with variable dispersion: i) dispersion oscillating fiber;
ii) negative dispersion decreasing fiber. Optical pulse compression techniques are important
for the generation of subpicosecond and femtosecond optical pulses. Dispersion decreasing
fibers are useful for high quality, pedestal-free optical pulse compression.

The classical soliton concept was developed for nonlinear and dispersive systems that have
been autonomous; namely, propagation distance has only played the role of the independent
variable and has not appeared explicitly in the nonlinear Schrodinger equation (NLSE)
(Ablowitz et al., 1981; Agraval, 2001; Akhmanov et al., 1991). Under condition of harmonical
dispersion and nonlinearity nonautonomous solitons interact elastically and generally move
with varying amplitudes, speeds, and spectra (Serkin et al., 2007).

High-order soliton propagating in a fiber with fixed dispersion and nonlinearity is reshaped
periodically after propagation distance equal to the soliton period 0.167t|B,| 1 T2 (Agraval,
2001; Akhmanov etal., 1991), where B, is second order dispersion coefficient, T, is the
full-width at half-maximum (FWHM) pulse duration. In a fiber with periodically modulated
core diameter, the dispersion oscillates periodically along the fiber length. When the
oscillation period approaches the soliton period, the soliton splits into few pulses. Simulations
show that second-order soliton splits into two pulses, which carrier frequencies are located
symmetrically with respect to the initial pulse frequency (Bauer et al., 1995; Hasegava et al.,
1991). A sequence of second-order solitons transmitted through dispersion oscillating fiber
(DOF) will produce a pulse train with alternate carrier frequency.

Nonlinear pulse propagation in periodic transmission lines with multisegmented fibers was
investigated extensively. The dispersion managed soliton (Malomed, 2006; Smith et al., 1996),
split-step soliton (Driben et al., 2000), and stationary rescaled pulse (Inoue et al., 2005) have
been discovered. The studies were focused mainly on the stability of solitons.
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Simulations show that soliton splitting into the pairs of pulses with upshifted and
downshifted central wavelengths can be achieved by a stepwise change of dispersion or by a
localized loss element or filter (Lee et al., 2003). The maximum spectral separation occurs at
locations that correspond to a half of soliton period for second-order soliton and to 0.225 of
soliton period for third-order soliton. In a fiber that consists of a few segments, the multiple
breakups of each soliton can generate Cantor set fractals (Sears et al., 2000). Theoretical
studies (Bauer et al., 1995; Hasegava et al., 1991; Lee et al., 2003; Sears et al., 2000) consider the
soliton splitting without effect of stimulated Raman scattering or high-order dispersion. The
fission of high-order soliton can be stimulated by self-steepening (Golovchenko et al., 1985),
Raman scattering (Dianov et al., 1985; Tai et al., 1988), and cubic dispersion (Wai et al., 1986).
These effects are not negligible for few-picosecond pulses.

Splicing losses and transient processes that arise due to a stepwise change of the dispersion
restrict the application of multisegmented fibers for soliton splitting. These disadvantages
of multisegmented fibers are surmountable in a fiber with a smooth modulation of the core
diameter. We considered the soliton splitting in a fiber with a sine-wave variation of the fiber
diameter (DOF).

Optical pulse compression techniques are important for the generation of sub-ps and fs optical
pulses. Dispersion decreasing fibers (DDF) are useful for high-quality, pedestal-free optical
pulse compression. There are several techniques to compress optical pulses, in particular
it is possible to utilize soliton effects. Earlier research focused on using the compression of
high-order solitons. This can provide rapid compression but suffers from residual pedestal.
Furthermore, the pulse quality at the optimum point of compression is poor, since a significant
proportion of the pulse energy is contained in a broad pedestal. A less rapid technique
but with better pulse quality is adiabatic amplification of fundamental solitons. To avoid
pulse distortion the amplification per soliton period cannot be too big. The method to
vary dispersion along the fiber length can be used to obtain the same effect as adiabatic
amplification, but the effect can be achieved in a passive fiber.

High pulse quality with minimal or no pedestal component can be achieved by the
adiabatic compression technique using dispersion decreasing fibers. Improved quality pulse
compression is possible and the input power requirements are significantly lower than that
for soliton-effect compression. For a DDF with length L the ratio of input to output dispersion
determines the maximum pulse compression factor for the case of no fiber loss and a constant
nonlinearity coefficient:

_ P2(0)
T B(L)
The maximum compression factor is determined by the ratio of input to output dispersion
and could be over 50. Using DDF with optimum dispersion profile it is possible to
obtain pedestal-free pulses of less than 200 fs duration using technique of adiabatic soliton
compression (Pelusi et al., 1997). In the case of short (< 3 ps) solitons it is necessary to take
into account the higher-order nonlinear and dispersive effects. In particular intrapulse Raman
scattering results to the shift of the soliton mean frequency. This frequency shift leads to the
change in GVD due to third-order dispersion 33. These effects result to the soliton corruption.
However the stable compression of ultrashort solitons in DDF can take place in the presence
of the Raman effect and third order dispersion. Taking these effects into account it is possible
to generate high quality pulses of 30 fs duration.

)
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A tunable source can be based on the supercontinuum generation (Haus et al., 2000) and on
the Raman conversion of the carrier frequency of the optical soliton (Dianov et al., 1985). Last
method could be high efficient especially whether smooth tuning in some frequency range is
required. Recently an efficient optical scheme has been proposed capable to generate 30 fs
pulses at MHz pulse repetition rates, smoothly tuned in the telecommunication range using
a high nonlinear dispersion decreasing fiber (Andrianov et al., 2007). The smooth tuning is
based on the Raman frequency conversion of ultrashort pulses. However, until now nobody
was able to build up the L-band tunable GHz ps source well synchronized with basic clock.
A high-repetition-rate broadband source is attractive both for high-capacity fiber transmission
systems and in optical spectroscopy and metrology. The task to generate the broadband
spectra in the nearby region of 1550 nm window was of remarkable interest from 1990
and since then the essential research efforts have been carried out in this area. Dense
wavelength-division multiplexing is an efficient and practical method to increase the capacity
of lightwave transmission systems. As the number of channels increases for such systems, the
required number of lasers becomes large if each channel has its own transmitter. Under these
conditions spectral slicing of a single coherent broadband transmitter has attracted attention,
especially for gigabit-per-second systems in which external modulators are used. So far,
spectral slicing has been limited to laboratory trials. However, the fiber transmission window
has been expanded to 400 nm with the removal of the water absorption peak.

Spectral slicing may then become attractive in real systems, especially if a single source can
cover the entire fiber transmission window (1300-1700 nm). Thus, a gigahertz-repetition-rate
(rep-rate) broadband source can be important for high-capacity light-wave transmission
systems. To achieve such a source a high-rep-rate mode-locked laser is used either as the seed
for further external spectrum generation or as the source itself. Actively mode-locked lasers
can provide high-rep-rate, good noise performance and can easily be locked to external clocks
through their intracavity modulator. However, even with soliton pulse shortening these lasers
produce only picosecond pulses. Further spectral broadening with these lasers has resulted
only in limited spectral widths, even in the supercontinuum regime. Passively mode-locked
lasers can provide short pulses directly and a very large externally generated bandwidth
but at a low rep rate. Although passive harmonic mode locking or external time-division
multiplexing can increase the rep rate of such lasers, they require extensive stabilization and
(or) suffer from poor timing jitter and poor supermode suppression.

2. Pulse propagation in single mode fibers

This section covers some fundamental concepts for modelling of pulse propagation in fibers.
The section describes numerical approaches used for modelling of the pulse propagation
in single-mode fibers with variable dispersion. For this aim nonlinear Schrodinger
equation (NLS) (or complex Ginzburg-Landau equation) is used. Split-step method with
time-frequency Fourier transform is applied for solving the NLS equation. We examine
the method of inverse scattering transform in application to numerical analysis of solitons
dynamics in presence of variable dispersion, pulse self-steepening and stimulated Raman
scattering. Numerical approaches used for solving and analysis of NLS equation are described
in sections below.
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2.1 Propagation equation

We assume that the incident light is polarized along a principal axis (for example chosen
to coincide with the x axis). In time-domain the pulsed optical field can be presented as
superposition of monochromatic waves

Ei(r,¢,z) = /j; dw A P(r, ¢, w) exp [—iwt + if(w)z] + c.c. =~

P(r, ¢, wo) /jo dw Ay exp [—iwt + if(w)z] + c.c., 2

where w is the field frequency, (, ¢) are transverse coordinates, z is the propagation distance,
A(w) is the mode amplitude, B(w) is called propagation constant which is z-component of
wavevector, “c.c.” is complex conjugate, {(r, ¢, w) describes transverse distribution of the
mode field. The optical field is assumed to be quasi-monochromatic, i.e., the pulse spectrum,
centered at wy, is assumed to have a spectral width Aw < 1. Thus the frequency dependence
of 1 in (2) can be neglected and (7, ¢, w) =~ P(r, $, wo) where wy is the pulse central frequency
For weakly guiding step-profile fiber the function ¢(r, ¢) gives transverse field distribution
for LPy; mode (see section 12-11 in (Snyder et al., 1983))

Jo(ur/a) r<a

99 = ko, 3
K(](w) 4

where Jp and J; are Bessel functions of the first kind, Ky and K; are modified Bessel functions

of the second kind, a is fiber core radius. Frequency dependent functions u(w), w(w) are
defined from eigenvalue equation

)’ 4)

where u? +w? = V2. Propagation constant can be found as g2 = k*n2 — u?/a?, wherek = w/c
is wavenumber, 7. is the fiber core refractive index.

For optical fibers having complex transverse distribution of refractive index the propagation
constant B(w) can be calculated numerically. Different methods for Bragg fibers (Yeh et al.,
1978),(Guo et al., 2004), photonic crystal fibers and microstructure fibers (Poli et al., 2007),
(Lourtioz et al., 2005), (Brechet et al., 2000) are proposed.

Equation (2) is inverse Fourier transform. At z = 0 integral (2) gives Fourier transformation
of input pulse E¢(r, ¢,z) = ¢(r, ¢, wo) A(t), where slowly varying pulse amplitude

A(t) = /_ °; dw Age i, ®)

_i 0 iwt
Ao= o Lw dtA(t)el, ©)

Eo(r,d,2) = Awtp(r, ¢, wp) exp [—iwot + if(w)z] + c.c., (7)



Dynamics of Optical Pulses Propagating in Fibers with Variable Dispersion 281

Taylor series of B(w) about the central pulse frequency wy is

Blw) = Blwo) + o+ﬁ2o2 Y Py ®)

m3

where vy is the group velocity, ) = w — wy

1_dp b

Ug dw w=wy

amg
dw"n

©)

w=wo

Parameter f, represents dispersion of the group velocity and is responsible for pulse
broadening. This phenomenon is known as the group-velocity dispersion (GVD), and S,
is the GVD parameter (Agraval, 2001). For modelling femtosecond pulse propagation in
microstructure fiber up to six-order dispersion coefficients can be used (Washburn et al., 2002).
With large number terms (m > 10) the Taylor series (8) roughly approximate dispersion due
to computing errors grows.

Pulse propagation in single mode fibers described by so-called generalized nonlinear
Schrodinger equation (NLS) or generalized complex Ginzburg-Landau equation. Detailed
derivation of this equation can be found in literature (Agraval, 2001), (Akhmanov et al., 1991),
(Kivshar et al., 2003). Including high-order dispersion terms f3,; the NLS equation takes form

2 ma
aj+§+i&ai_izi’ﬂ‘3ﬂa = ( 2 aPNL). (10)

oz 2 2 ot? m! otT™m PNL_HaTO ot

where T = t — z/v, is the local time in coordinate system moving with the pulse at the group
velocity vg, a describes the effects of fiber losses, Py is nonlinear media polarization

Pni(z,7) = 7|APA 4+ 7RQ(z, T) Az, T). (11)

The media polarization Py includes both the electronic and vibrational (Raman)
contributions. The term 7|A|?A describes instantaneous Kerr nonlinearity, YrQ(z, ) A(z, t)
associated with stimulated Raman scattering. The time derivative appearing on the
right-hand side of Eq. (10) is responsible for self-steepening and shock formation
(Akhmanov et al., 1991) at a pulse edge.

Nonlinear parameter -y in eq. (11) is defined as

_wonyp
CAeff

(12)

In scalar approach the effective area is

([ [ triie)

Aeff = T
/ /O [ (r, @) [*rdrdg

/ (13)
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In (Leegsgaard et al., 2003) modified formula for effective area is proposed

N 2
o (n1>2 (/(E . D)rdrd¢) ”

E'-I_jzrdrd,
/Siozw rdrdg

where D is electric flux density of fundamental mode, n‘g is effective group index of the mode,
ny is the refractive index of silica in the limit of zero field. Note that the integration in the
denominator is restricted to the silica parts fiber that contains air holes running along its
length. Eq. (14) was applied for calculating of effective mode area in silica-based photonic
bandgap fibers (Laegsgaard et al., 2003). This formula has been derived without making
assumptions about the field energy distribution and is therefore applicable even in the case
conventional fibers that guide light in silica or other materials.

Considering a mean value of the Raman gain efficiency gr in the fiber cross-section, the
relation between the Raman gain coefficient and the Raman effective area can be expressed
as yrR = gr/ Agff (see for example Chapter 5 in (Poli et al., 2007)). Nonlinear parameter yg
is responsible for Raman gain in (11). Notice that the coefficient gr represents a total value
of the Raman gain efficiency associated with the fiber, which takes into account the materials
that compose the fiber and their spatial distribution. If the interacting signals have the same
frequency, the Raman effective area coincides with that given by the "classical" definition (13).
Nonlinear susceptibility Q(z, T) in equation (11) for media polarization can be expressed as
convolution

Q) = [ m()IAG T 1), (15)
where ) 5
hr(t) = I —|—sz exp (—7/Tp)sin (7/Ty). (16)
Ty T2

Parameters Ty and T, are two adjustable parameters and are chosen to provide a good fit to
the actual Raman-gain spectrum. Their appropriate values are T1=12.2 fs and T,=32 fs. The
Fourier transform hig (w) of hg(T) can be written as

. T2+ T2
hr(w) = 1 2 .
R(@) T2 + T2(1 - iwTZ)?

17)

Using Fourier transform JF(|A(z,7)|?) at the given plane z the function Q(z,T) can be
calculated as
Qz7) = F! [ir(w) - F(IAG 7)), (18)

where F~! denote inverse Fourier transform.
Another approach for description of Raman delayed response is based on the approximation
of Q(z, T) by damping oscillations (Belenov et al., 1992):

?Q 200 1 1 2
o Tt gl = plaEol "
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Under assumption T} < T, eq. (19) can be reduced to eq.(15). Calculation of Q(t) for the
given A(z, T) at the fixed plane z can be done by finite-difference scheme for (19). Such scheme
can be somewhat convenient than inverse Fourier transform (18).

2.2 Numerical methods

For modelling of the pulse propagation in single mode fiber split-step Fourier method was
applied (Agraval, 2001), (Malomed, 2006). Figure 1 shows numerical scheme applied for
single propagation step Az. Functions Q(7) and 9Py /97 are calculated under a periodic
boundary condition that imposed upon discrete Fourier transform. Use of periodic boundary
condition for the given temporal frame allows to simulate the propagation of pulse train
generated by a modelocked laser. For picosecond pulses which central frequency wy is far
from zero of the group velocity dispersion two dispersion terms B, and B3 are sufficient.
For z-dependent dispersion and nonlinearity coefficients B,,(z), v(z) and yr(z) should be
evaluated for each z. The scheme (fig. 1) is performed repeatedly until fiber end is reached.

Calculate Q(t) (19) wusing
2nd-order Adams-Moulton Calculate eq. (11)
method

Input A(z, 1)

Dispersion: onlmearlty —aAz/2
Aq = FIANL(T)] ¥ Ant (1) =
exp (i mQ SN

(024 Bo? A
P [l( 27+ 507 Z — 2wy (aPNL/a'r )Az

Fig. 1. Numerical scheme for the pulse propagation from plane z to the plane z + Az. F is the
fast forward Fourier transform (FFT), 7! is the fast inverse Fourier transform (IFT).

2.3 Optical solitons
Optical solitons arize due to interplay between anomalous dispersion (5, < 0) and Kerr
self-phase modulation. The solitons are solutions of nonlinear Schrédinger equation (NLS)

0A B d*A 2

P o = iv|A|*A(z, T). (20)
Eq. (20) obtained from (10) neglecting by high-order dispersion terms (8, =0, m = 3,4,5...),
by stimulated Raman scattering (yr = 0) and by self-steepening (0P /9T = 0).
NLS (20) has specific pulselike solutions that either do not change along fiber length or follow
a periodic evolution pattern — such solutions are known as optical solitons. Their properties
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were understood completely using inverse scattering method (Ablowitz et al., 1981). Details
of the inverse scattering method in application to the optical solitons are available in literature
(Agraval, 2001; Akhmanov et al., 1991; Malomed, 2006).

Initial field

A(0,7) = N[ 72 sech (l) 1)

where 19 is initial pulse width. For integer N (21) give so-called N-soliton solution,

The first-order soliton (N = 1) corresponds to fundamental soliton It is referred to as
the fundamental soliton because its shape does not change on propagation in the fiber
with fixed dispersion. In the fiber with variable dispersion nonautonomous optical solitons
propagate with varying amplitudes, speeds, and spectra. Analytical solution for fundamental
nonautonomous solitons in (Serkin et al., 2007) is given.

Higher-order solitons are also described by the general solution of Eq. (20)

S j , o 49
A(z,r):];Ajsech [? (T—zvj)}exp i ¢0+ET+ 1 z |, (22)

where Aj = 279(|B2|/7)/2Im(A;), v; = 215 'Re(A), u; = 215 'Im(A}), A; are roots of
scattering matrix element of (1) = 0. Parameters A; give solitonic spectrum. The scattering
matrix is

a(A) —b*(A)
M(3) = (bm) (V) ) -

}glgoexp {1% (8 _O_L_) } exp {1/: \/% (g /é*) } exp {1% (g _OT)} (23)

Numerical procedure for calculating (23) is described in (Akhmanov etal.,, 1991). The
scattering matrix is calculated as product

ay(A) —b*(/\))
M(A) = Mi(A) = ! 24
( ) ll_ll,:K ]( ) IQK(bl(A) a;k()\) ( )
where M;(A) is partial scattering matrix, associated with temporal step AT = T/K. The local
timety = —-T/2+1A7, 1 =1,...,K, Kis the total number of time points,
ay(7) = e~ AT {cos(dlAT) + i)»w} (25)
l
bi(d) = i A (), [ T AT, 26)
B2

where d; = (A% +[A(7)[>7|2| ~)"/2.
This procedure can be applied to numerical solution of (20) or (10). It allows to separate out
amplitudes and phases of solitons.
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Physically, parameters A; and v; in (22) represent amplitude and frequency shift respectively.
Parameter u; determines width of soliton. For the pulse (21)

Aj=i(j—-1/2), j=1,N (27)

Higher-order solitons (N > 1) show periodical evolution during propagation. Pulse shape is
repeated over each section of length zg (fig.2 a).

zo = 1 [2p2| (28)

Figure 2 shows dynamics of second-order soliton. Note that soliton parameters Im(A) and
Re(A) remain unchanged (fig.2 b).

(a) (b)
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Fig. 2. Temporal evolution over five soliton periods for the second-order soliton. (a) Pulse
dynamics. Black color corresponds to high intensity. (b) Soliton parameters Inm(A). N = 2,
Bo = —12.76 ps?/km, y = 82W km !, zy = 0.166 km.

2.4 Soliton fission due to harmonic modulation of the local dispersion
In this section we consider soliton dynamics governed by nonlinear Schrédinger equation
with variable second-order dispersion coefficient

0A . PA
E. 1’322(2) 32 = iv|A|?A(z, T). (29)
where
Ba(z) = (B2) (14 0.2 sin(2m z/zp + @m)) , (30)

In the case of the harmonic periodic modulation of the local GVD coefficient, one may expect
resonances between intrinsic vibrations of the free soliton. When the period of modulation of
the fiber dispersion approaches the soliton period zy, the soliton splits into pulses propagating
with different group velocities (fig. 3a).

At z = 0 amplitudes of fundamental solitons are different Im(Ay) = 0.5, Im(Ap) = 1.5.
But the group velocity associated with frequency shift is the same Re(A;) = Re(Ay) = 0
(fig.3b). After single modulation period z = zp solitons acquire the same amplitudes
Im(Ay) = Im(Ap) = 0.987, but different group velocities Re(A;) = 0.411, Re(Ay) = —0.411.
As the pulses propagates along the fiber imaginary part of A decreases. After five modulation



286 Numerical Simulations of Physical and Engineering Processes
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Fig. 3. A typical example of the splitting of a second-order soliton N = 2 into two
fundamental solitons in the NLS equation with the sinusoidal modulation of the local
dispersion coefficient (30). (a) Pulse dynamics; (b) Im(A) (solid curve, left axis) and Im(A)
(dashed curve, right axis) (8,) = —12.76 ps?/km, ¢, = 7t other parameters are the same as
in Fig. 2.

periods (z = 0.83km) Im(Ay) = Im(A;) = 0.89. Decrease of Im(A(z)) connected with
emerging of dispersive wave under harmonic modulation of the group-velocity-dispersion
coefficient B (z).

Regime shown in fig.3 corresponds to the fundamental resonance between small vibrations of
the perturbed soliton and the periodic modulation of the local GVD. Change of modulation
period z; or modulation phase ¢, can degrade the soliton split (Malomed, 2006). In the
fig.4 the pulse performs a few number of irregular oscillations, but finally decay into two
fundamental solitons with opposite group velocities. For ¢,; = 0 (fig.4b) group velocity of
output pulses is less by half than the same for ¢;;, = 7 (fig.3b).
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Fig. 4. Splitting of a second-order soliton into two fundamental solitons. (a) Pulse dynamics;
(b) Im(A) (solid curve, left axis) and Im(\) (dashed curve, right axis) (8,) = —12.76 ps?/km,
zm = z9 = 0.166 km, ¢, = 0 other parameters are the same as in Fig. 2.

For ¢y = m/4 and N = 2 the width of input pulse performs a large number of irregular
oscillations without splitting into fundamental solitons in spite of resonant conditions z,, =
zo = 0.166 km.



Dynamics of Optical Pulses Propagating in Fibers with Variable Dispersion 287

The parameter N = 1.8 corresponds to input pulse (z = 0) which consists of two fundamental
solitons (22) having Ay = i0.3 and A, = i1.3. The solitons remains propagating with the
same group velocity (fig.5). For the constant GVD parameter B(z) = (B2) the input pulse
(N = 1.8) performs four periods of oscillations at the propagation distance (z = 0.83km).
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Fig. 5. Propagation of the pulse with N = 1.8. other parameters are the same as in Fig. 2.
During propagation Re(A1(z)) = Re(Az(z)) =0

3. Fission of optical solitons in dispersion oscillating fibers

Dispersion oscillating fibers have a periodic or quasi-periodic variation of the core diameter
(Sysoliatin et al., 2008). Fission of second-order solitons or high-order solitons occurs due to
longitudinal oscillation of the fiber dispersion and nonlinearity. In this section the results
of numerical simulations of soliton fission in dispersion oscillating fiber are presented.
Comparative analysis of experimental results and results of modified nonlinear Schrédinger
equation based model is given. Effect of stimulated Raman scattering on the soliton fission is
discussed.

3.1 Experimental confirmation

The solitons splitting described by the nonlinear Schrédinger equation with periodic
perturbation was analysed in (Hasegava et al., 1991) published in 1991. However, the lack of
a suitable fibers delayed experimental observation. Soliton splitting in dispersion-oscillating
fiber was first observed in an experiment (Sysoliatin et al., 2008) that used a mode-locked laser
(PriTel UOC) capable of emitting picosecond optical pulses near 1.55 um, a wavelength near
which optical fibers exhibit anomalous GVD together with minimum losses. Pulse repetition
rate was 10 GHz. The pulses were amplified by erbium-doped fiber amplifier (EDFA) up to
W =350 mW average power. The time bandwidth product for amplified pulses is found to
be about Ty, Av = 0.304, where T, = 1.767p is a pulse duration and Av is the FWHM
spectral pulse width. After EDFA, the pulses were launched into the DOF through fusion
splicing with a single mode fiber. After propagation in 0.8-km length of DOF pulses were
analyzed by intensity autocorrelator “Femtochrome” with the large scan range exceeding 100
ps and “Ando AQ6317” optical spectrum analyzer with a resolution bandwidth of 0.02 nm

(fig.6).
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Fig. 6. Experimental setup: Pritel UOC, picosecond pulse source; EDFA, Er-doped fiber
amplifier; DOF, dispersion oscillating fiber; AC, autocorrelator; OSA, optical spectrum
analyzer, OSCI, wide-bandwidth oscilloscope.

The DOF was drawn in Fiber Optics Research Center (Moscow, Russia) from the preform with
W-profile of refractive index. The manufactured DOF has linear loss 0.69 dB/km at 1550 nm.
The fiber diameter varied slightly during the drawing in accordance with prearranged law.
The variation of outer diameter of the fiber along its length is described by the sine-wave
function

d(z) = do(1 + dp sin(2mz/zm + om)), (31)

where dy = 133 ym, dy, = 0.03 is the modulation depth, z;, = 0.16 km is the modulation
period, ¢, is the modulation phase. For 0.8-km length of DOF in these experiments, ¢,;, = 0
at one fiber end and ¢,; = 7 at other fiber end, according to eq.(31). Thus, the modulation
phase will be different for pulses launched into opposite fiber-ends.

With the average power of input pulse train below 120 mW the pulses transmitted through
DOF were not split. The autocorrelation trace of output pulses have a shape typical for a
train of single pulses separated by 100 ps interval. When average input power was increased,
the autocorrelation trace of output pulses demonstrated three peaks (see Fig.7). Normalized
intensity autocorrelation is given by:

e = ([ 1Eoriee—opa) [ 1Eor) @

where E(t) is electric field, t is the time, T is autocorrelation delay time. Autocorrelations
shown in Fig.7 correspond to two pulses E(t) = Ay (t — T/2) + Ay(t + T/2) separated by
temporal interval T. The value of T can be found measuring the distance between central and
lateral peaks of autocorrelation function as it was shown in Fig.7(a).

The pulse splitting arises due to the fission of second order soliton. In the fiber
with longitudinal variation of dispersion the second-order soliton decays into two pulses
propagating with different group velocities. One of the pulses has red carrier frequency
shift while the other has blue shift with respect to the initial pulse carrier frequency. The
temporal separation between pulses depends on the difference between group velocities
which are determined by pulse frequency shifts. In Fig.7 the pulse splitting dependence on
the modulation phase and input pulse width is demonstrated. For ¢,; = 7 (Fig.7(a)(c)) the
temporal interval T between pulse peaks is higher than the same for ¢, = 0 (Fig.7(b)(d)).
Accordingly the largest frequency shift corresponds to the case shown in Fig.7(a)(c).

At time delay T = +£T the intensity autocorrelation (32) is given by

C(£T) = Lp/(1+ 1), (33)
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Fig. 7. Intensity autocorrelation traces of output pulses after propagation 0.8-km DOFE. (a)
The input average power is P = 147.3 mW. The input pulse width is Ty, = 1.75 ps.
Modulation phase is ¢, = 7. (b) P = 150.5 mW, T,,,, = 1.75ps, ¢y = 0. (c) P = 167.4 mW,
Towi = 2.05ps, @ = 7. (d) P = 167.4 mW, T,y = 2.05ps, ¢ = 0. The temporal interval
between the peaks of output pulses T is given by the distance between peaks of
autocorrelation trace as it shown in Fig.7(a).

where Iy = |A1(0)]*/]A2(0)[? if [A1(0)]* < [A2(0)] and Lp = |A2(0)[>/|A1(0)[* if
|A1(0)> > |A2(0)|%, |A1(0)|*> and | A2(0)|? are peak intensities of output pulses. When the
input pulse splits symmetrically (I; = 1) the autocorrelation become C(+T) = 0.5. For
autocorrelation trace shown in Fig.7(a) C(T) = 0.38, C(T) = 0.33 (Fig.7(b)), C(T) = 0.41
(Fig.7(c)), C(T) = 0.19 (Fig.7(d)). The value of C(T) is underestimated due to the insufficient
sensitivity of second harmonic generation (SHG) autocorrelator. However, it can be seen that
for the same input power the value of C(T) is higher for ¢,, = 7 (Fig.7(a)(c)) in comparison
with the case ¢,; = 0 (Fig.7(b)(d)). That means the case ¢, = 7 is preferable for generation of
pulse pairs with nearly identical peak intensity (| A1(0)|? ~ |A2(0)/?).

The splitting of second-order solitons produces two fundamental solitons (Bauer et al., 1995;
Hasegava et al., 1991). The soliton spectrum is not broadened due to self-phase modulation
because the last is balanced by negative dispersion. Spectral broadening shown in Fig.8 arises
mainly due to the opposite frequency shifts of two pulses.

In time domain, the pulses are well separated (Fig.7), while in frequency domain the spectra
are overlapped. Interference between these spectra leads to the modulation of the envelope of
output spectrum (Fig.8(a)(b)). To a first approximation, the intensity of output spectrum can
be expressed as follows:

F(w) = | Aj (w)e @UT/2) 4 Ay (w)elw(HT/2)|2
= | A2 + [ A + 2| A1 || Az | cos[wT — ¢y (w) + ¢a(w)], (34)

where F(w) is the spectral intensity at DOF output, A; , are the spectra of the first and second
pulse, ¢ = arg(Aj ) are spectral phases. Eq. 34 shows that output spectrum is modulated
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Fig. 8. Pulse train spectra. (a),(b),(c),(d) are the spectra of the output pulses, which
autocorrelation traces are shown in Fig.7(a),(b),(c),(d) correspondingly. (e) the spectrum of
input pulse train; FWHM spectral width of input pulses is 1.38 nm (0.172 THz).

T estimated by eq. 34| T measured

17. ps (from Fig.8(a)) |18.3 ps (Fig.7(a))
6.3 ps (from Fig.8(b)) | 6.6 ps (Fig.7(b))
13. ps (from Fig.8(c)) | 14. ps (Fig.7(c))
6.3 ps (from Fig.8(d))| 6.8 ps (Fig.7(d))

Table 1. Temporal interval between the peaks of output pulses.

by cosine function which period depends on the temporal interval T between two pulses. In
the Table 1 the temporal interval between peaks of output pulses T is listed. The first column
contains values of T estimated from spectra (Fig.8) by means of eq.(34). The second column
contains the values directly measured from autocorrelation traces (Fig.7). In eq.(34) functions
¢12(w) are not known and assumed to be constant. This leads to underestimation of the value
of T obtained from spectrum.

At large average power of input pulses train the autocorrelation trace (Fig.9(a)) and spectrum
(Fig.9(b)) become more complicated. Initial pulse splits into a few low-intensity pulses and
one high-intensity pulse which carrier frequency has a large red shift due to Raman scattering
(Dianov et al., 1985). In Fig.9(b) the spectrum of Raman shifted pulse is located in wavelength
range between 1554 nm and 1559 nm.

3.2 Modelling of soliton propagation in dispersion oscillating fibers

This section deals with solitons in the practically important model of the fibers with
periodically modulated dispersion. Numerical model includes z-dependent second order
and third-order dispersion coefficients B, (z), B3(z), stimulated Raman scattering and pulse
self-steepening (eq. 10).



Dynamics of Optical Pulses Propagating in Fibers with Variable Dispersion 291

1.0 = 1.0
5 5
| g |
5 0.8 B 0.8
5 0.6 2 0.6
g 2
'c—é 0.4 _gé 0.44
Z‘c-, 0.2 3 0.2
0.0 /\j\/\/\/\/\__J y . 2 0.0- IREPA OMMASEI o A
100 -50 0 50 100 & 1545 1550 1555 1560
T, pS Wavelength (nm)
(a) (b)

Fig. 9. High power pulse transmission through DOEF. (a) Autocorrelation trace. (b) pulse train
spectrum. Width of initial pulse is Ty, = 2.05 ps, The input average power is
P = 258.9 mW. The phase of modulation is ¢ = 0.

For manufactured DOF which diameter is given by (31) the longitudinal variation of
dispersion coefficients B, and B3 can be expressed with the following approximation

Ba2(z) = (B2) [1+ Bam sIn(27 z/zm + @m)], (35)
B3(z) = (B3) [1+ Bam SIN(27 2/zm + ¢m)], (36)
where (B,) = —12.76ps’km™!, (B3) = 0.0761ps’km~ !, Boy = 0.2, B3 = 0.095. The

dispersion coefficients (35,36) were evaluated from the measurements of the dispersion of
three fibers with the fixed outer diameter: 128 ym, 133 ym and 138 ym. All of three fibers and
DOF are manufactured from the same preform.

Nonlinear medium polarization includes the Kerr effect and delayed Raman response
Pni(z,t) = 7(2)|A]*A + R (2) QA(z, t), where (z) and yr(z) are nonlinear coefficients:

Y(z) = (v) [1 = ym sin(2w z/zm + Qum)], (37)

YrR(2) = (YR) [1 = Ym sin(270 2/2m + @m)], (38)

(v) = 82W km ™! and (yg) = 1.8W 'km ™!, 7,, = 0.028. These coefficients are obtained
by calculating of effective area of fundamental mode.

The equation (10) was solved using standard split-step Fourier algorithm (see section 2.2).
Simulations were carried out with hyperbolic secant input pulses. In simulations, we
characterize the input pulses by the soliton number (order) N. The number of pulses that
arise due to the splitting of high-order soliton is determined primarily by N (Bauer et al.,
1995; Hasegava et al., 1991; Malomed, 2006).

The pulse splitting is most efficient in resonant regime when the modulation period z;, is
equal to the soliton period zg = 0.167t|(B)| 1T, ., (Hasegava et al., 1991; Tai et al., 1988).
For initial pulse width T, = 2.05ps (Fig.10) the soliton period zg = 0.166 km is close to
the modulation period z;; = 0.160km. For ¢,; = 7 only one modulation period of DOF is
necessary for the soliton fission (Fig.10(a)). After propagation of 0.8 km of DOF the temporal
separation between resulting pulses become T = 14ps. The same value was obtained in
experiment (Fig.7(c)). For ¢;; = 0 the soliton fission arises after propagation of 0.6 km in DOF



292 Numerical Simulations of Physical and Engineering Processes

200 10.6
s 0.4
TN 10.2
2 1.0«—\.‘ loo €
= &
o Sj {02
UL 104

—-0.6

Re(V)

00 02 o4 06 00 02 04 06 08
z, km z, km

(b)

Fig. 10. Numerical simulation of the pulse evolution in DOF. Width of initial pulse is

T,

F!

wiv = 2.05ps, The pulse has soliton order N = 1.8. (a) ¢ = 7. (b) ¢ = 0.

(Fig.10(b)). The temporal separation between output pulses is T = 6.2 ps that is agree well
with experiment (Fig.7(d)).

For the initial pulse width T, = 1.75 ps the soliton period is zg = 0.126 km. This value does
not obey the resonant condition zg = z;,. However for input pulse width Ty, = 1.75 ps the
temporal separation between pulses (Fig.7(a)) is higher than the same for resonant conditions
(T = 2.05ps, zg = 0.166 km =~ z,,) (Fig.7(c)). Experimental observation is in agreement
with calculations. Numerical simulations show that such effect arises due to the simultaneous
action of the periodical modulation of the fiber dispersion and stimulated Raman scattering.
The frequency red shift due to the Raman scattering is inversely proportional to the fourth
power of the pulse width (Tai et al., 1988). As result the change of the pulse group velocity
and correspondent temporal separation between pulses will be higher for the shorter pulse
width (Teyp = 1.75ps).

The input soliton decays into pulses with different peak intensities (Fig.10). Such asymmetry
arises due to stimulated Raman scattering. For ¢,, = 7t (Fig.10(a)) the ratio of the peak of
low-intensity pulse to the peak of high-intensity pulse is I1 = 0.9. For ¢, = 0 (Fig.10(b))
we obtain I1 = 0.21. Numerical calculations confirm our conclusions (Section 3.1) that the
case ¢, = 7 is preferable for the symmetrical splitting of input pulse. Note that without
stimulated Raman scattering and third-order dispersion term the pulse with N = 1.8 does not
split (see fig. 5).

The pulses become propagating with different group velocities (Fig.10) due to the shift of
the carrier frequency. For the modulation phase ¢, = 7 instantaneous frequency shift
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of output pulses is shown in Fig.11(a). The first pulse has blue shifted carrier frequency
(vp — (v)1) = —0.105 THz while for the second pulse the frequency is red shifted (vy — (v),) =
0.120 THz, where (v), , are mean-weighted carrier frequencies of the first and second pulses
correspondingly. Pulses are separated well in time domain. This allows to calculate their
spectra separately (Fig.11(b)). The first pulse has the central wavelength A; = 1549.60 nm
while the second has A, = 155148 nm. The difference (A; — A1) = 1.88nm is large
enough to process the pulses in frequency domain separately using narrow-bandwidth fiber
Bragg grating (Othonos et al., 1999), liquid crystal modulator array (Weiner, 1995) or arrayed
waveguide grating (Oda et al., 2006), for example. To simulate effect of spectral filtering on
the pulses (Fig.11(a,b)) the field after stopband filters f (w) and f_(w) (39) was calculated.

f+(w) =1—tanh[(1.5 — (w — wo £ A))/0.08] /2
—tanh|[(1.5+ (w — wg £ A))/0.08] /2, (39)
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Fig. 11. Simulation of pulse characteristics after propagation in 0.8 km of DOF with ¢, = 7.
(a) Output intensity (left axis, thick curve) and instantaneous frequency shift (right axis, thin
curve). (b) Thick solid curve shows spectrum of the first pulse. Thick dashed curve shows
spectrum of the second pulse. Arrows mark central wavelengths A; and A, of the first and
second pulses correspondingly. Thin solid curve is the spectrum envelope of the pulse train
consists from pair of pulses shown in Fig.(a). The frequency shift was calculated as
derivative darg(A)/odt. (c) Dashed curve is the pulse after stopband filter f (39) solid curve
is the pulse after stopband filter f_. Simulation parameters are the same as in Fig.10(a)
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where wy = 27tvg, A = 1ps~!. After spectral filtering each half still remains a well defined
pulse (Fig.11(c)).

The envelope of the spectrum of the train of output pulse pairs is modulated (Fig.11(b), thin
solid curve) due to the interference between pulses. This is in agreement with experimental
observations (see Section 3.1).
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Fig. 12. Simulation of pulse characteristics after propagation in 0.8 km of DOF with ¢, = 0.
(a) Output intensity (left axis, thick curve) and instantaneous frequency shift (right axis, thin
curve). (b) Thick solid curve shows spectrum of the first pulse. Thick dashed curve shows
spectrum of the second pulse. Thin solid curve is the spectrum envelope of the pulse train
consistent from the pulse pairs shown in Fig.(a). Simulation parameters are the same as in
Fig.10(b)

For ¢, = 0 output pulses are shown in Fig.12. The temporal interval between pulses is
T = 59ps (Fig.12(a)). While for the ¢, = 7 the value T = 13.8 ps was obtained. The
correspondent decrease of the temporal interval between pulse peaks with the change ¢,
was observed in experiments (Fig.7). For ¢,; = 0 output pulses are overlapped both in time
domain and in frequency domain. Fig.12 demonstrated that deep oscillations of spectrum
envelope (thin curve) arise only in region of overlapping of pulse spectra (1549.0nm <
A < 1541.5nm). The frequency shift for the first pulse is (vp — (v);) = —0.041THz
(A1 = 1549.75nm) while for the second pulse (1y — (v),) = 0.093THz (A, = 1551.35nm).
The difference between central wavelengths of considered pulses is (A — A1) = 1.08 nm. The
value (A — A7) is approximately half the same obtained for ¢, = 7 (Fig.11). Overlapping of
pulse spectra does not allow to process pulses in frequency domain separately.

4. Pulse propagation in dispersion-decreasing fibers

The fibers with dispersion varying along length have important applications in optical signal
processing such as high-quality optical pulse compression, coherent continuum generation,
nonlinear dynamic dispersion compensation and other applications (Sysoliatin et al., 2010).
This section describes effect of the pulse compression in dispersion-decreasing fibers.

Our experimental setup (Fig.13) includes an actively mode-locked fiber laser operating at
10 GHz as a source of 2.6 ps pulses at central wavelength Ag = 1552nm, high power fiber
amplifier, DFDDF (dispersion flattened dispersion decreasing fiber), filter at 1610 nm after the
fiber. To analyze the pulse propagation a spectrum analyzer, autocorrelator and power meter
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are used. The measurements have been carried out for different levels of EDFA pump current.

uocC

CLOCK

Fig. 13. Experimental setup: Pritel UOC, picosecond pulse source; EDFA, Er-doped fiber
amplifier; DFDDF, 42 m length of dispersion flattened dispersion decreasing fiber; AC,

EDFA

DFDDF

» +6.5nm

FILTER

1610

AC
OSA

<]y

Agilent
Infinium
80GHz

autocorrelator “Femtochrome”; OSA, optical spectrum analyzer ‘Ando AQ6317”; “Agilent
Infinium”, sampling scope with 80 GHz bandwidth; “FILTER”, WDM filter

The DFDDF fiber has convex dispersion function vs wavelength (Fig.14). In experiments
42 m-length fiber was used. Outer diameter of the fiber decreases from 148 ym to 125 ym, and
chromatic dispersion from 10 ps nm~'km ™! to —2 ps nm~'km 1. Group velocity dispersion

is zero at z = 40 m.

Spectrum obtained after propagation of 2.6 ps pulses in DFDDF indicate a red-shifted
sideband (fig.15(a)) due to the stimulated Raman scattering (Dianov et al., 1985; Tai et al.,
1988). Using commercially available WDM bandpass filter we produce 0.9 ps pulses at
1610 nm. These pulses are synchronized with the input (Fig.15(b)). For a high pulse energies
a broadband continuum radiation was observed. However it is essential that the input pulse
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Fig. 14. Dispersion (solid curve) and outer diameter (dashed curve) of DFDDF versus fiber

length.
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energy should not exceed some critical value to obtain the high quality fully synchronized
output pulses at 1610 nm after the filter.
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Fig. 15. Output of the DFDDF fiber. (a) Optical spectra obtained by simulation (top) and
experimentally (bottom); (b) Sampling scope trace of the pulse at DFDDF input (black color)
and output signal of 1610 nm filter (gray color). Input pulse energy is 140 nJ. Pulse repetition
rate is 5.37 GHz.

The numerical simulations which model pulse propagation in the DDF are based on the
nonlinear Schrodinger equation (10). For manufactured fiber linear absorption coefficient
a = 0.08km~!, which corresponds to 0.35 dB/km measured loss. Dispersion coefficients
Bm(z), (m = 2,3,4,5,6,7) take into account longitudinal variation of the fiber dispersion.
The approximation B,,(z) = 2’,2372 Ay (z)F was used. Where d(z) is the DDF outer
diameter. Effective area for nonlinear coefficients v and g (12) is approximated by Aqg =
ag + Zj:1,2,3 [ajd] (Z) + b]'dij (Z):| .

Due to the decreasing of the absolute value of the dispersion the initial solitonic pulse is
strongly compressed (fig.16(a)). After compression the pulse envelope becomes modulated.
As result the generation of Raman red-shifted radiation become efficient. Simulation shows
that broadband red-shifted Raman component (Fig.16(b)) appears after the propagation
distance z = 35 m.

Initial pulse (z = 0) corresponds to four solitons (N = 4.14). There are four solutions A;
(fig.16(c,d)). The solitonic spectrum (fig.16(c,d)) is plotted up to z = 40m. Because for
z > 40m GVD is normal. After z = 15m new solutions emerged. (fig.16(d)). The soliton
amplitude associated with Im(A;) (22). While the group velocity associated with Re(A;). Up
to z = 25 m all solitons propagate with the same group velocity, because Re(A j) = 0 (fig.16(c)).
At z = 35 m the pulse is strongly compressed (fig.16(a)) and the soliton splitting appears
(fig.16(c,d)). The soliton having maximum amplitude shown by thick solid curve (fig.16(c,d)).
This soliton is responsible for generation of broad red-shifted sideband at fiber end (fig.16(b)).
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Fig. 16. Simulation of the pulse compression and red-shifted sideband generation. (a) Pulse
dynamics. (b) Spectrum dynamics. Top inserts show the the intensity after 42 m propagation

in DFDDF. In density plots black color corresponds to higher intensity. (c) Real part of A;. (d)
Imaginary part of A;. Input pulse energy is 140 nJ.

5. Conclusion

The fibers with varying along length chromatic dispersion are of essential interest for
nonlinear fiber optics. The fiber parameters variations can be treated as an effective loss or
gain. The additional benefit is that the spontaneous emission noise is not amplified in such
passive fiber. There are applications of such fibers as the high-quality soliton compression,
soliton splitting, stable continuum generation, nonlinear dynamic dispersion compensation
in optical network, widely tunable GHz repetition rate all-fiber laser and other.

Using a single-wavelength picosecond pulse laser and dispersion oscillating fiber, the
generation of a train of picosecond pulses with alternate carrier frequency was demonstrated.
Experimental observations are in agreement with numerical simulations. The model includes
the Raman self-frequency shift, third-order dispersion, and nonlinear dispersion as well as
the modulation of other fiber parameters. The pulses with different carrier frequencies
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are obtained due to the soliton splitting in the fiber with variable dispersion. We focus
on the splitting of second-order solitons, because stimulated Raman scattering essentially
complicates the dynamics of high-order solitons propagated in manufactured DOF. In this
case, high-order soliton splits into a series of low-intensity pulses and a single high-intensity
pulse with a large red shift of the carrier frequency. Second-order soliton transmitted through
the DOF splits into two pulses with different amplitudes. For various applications, it is
preferable to obtain the pulses with the same peak power. For second-order solitons, the
difference between the peak powers of output pulses can be reduced by the appropriate
choice of the phase of the periodical modulation of the core diameter of the fiber. The split
pulses propagate with different group velocities. Transmitting pulses through a fiber with
appropriate length, it is possible to achieve the doubling of the repetition rate of input pulse
train.

The DOF can be used in principle for the splitting of high-order solitons. The effect of Raman
scattering on the soliton splitting depends mainly on the pulse peak power. The peak power of
solitons is reduced in a fiber with a small second-order dispersion 8, . To achieve the splitting
of third-or fourth-order solitons without significant effect of Raman scattering, one can use a
dispersion oscillating fiber with reduced mean-weighted dispersion. Splitting of high-order
solitons will allow increasing the frequency separation of output pulses and building up the
efficient multiwavelength optical clock.

Using dispersion decreasing fiber we have demonstrated generation of pulse sideband having
large frequency red-shift. The sideband is coherent. It allows to generate picosecond pulses
using spectral filtering of this sideband. Such technique was applied to construct L-band
tunable GHz repetition rate fiber laser. The novel efficient optical scheme allows to generate
high quality 0.9 ps pulses at 1610 nm pulses, fully synchronized with basic clock at multi
gigahertz pulse repetition rate.

Numerical simulations described in presented chapter reveal the solitons dynamics. Analysis
of solitonic spectra (A;) give us a tool to optimize fiber dispersion and nonlinearity for most
efficient soliton splitting or pulse compression.
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1. Introduction

A self-gravitating system (SGS) is a system where many particles interact via the gravitational
force. When we shall explain a distribution of SGS in phase space, the Boltzmann-Gibbs
statistical mechanics is not useful. This is because the statistical mechanics is constructed
under the condition of the additivity of the energy: as well known, the total energy of several
SGSs is not equal to the sum of the energy of each system. In fact, SGS does not have a
tendency to become a state characterized with a temperature.

If we use the statistical mechanics assuming that the state of the SGS with an equal mass m
becomes isothermal with the temperature T and that the particles of the system are distributed
spherically symmetrically, what kind of distribution can be obtained? Then, the structure in
phase space can be determined using the Maxwell-Boltzmann distribution. For example, the
number density at a radial distance  in real space is given by

nyp(r) oce w0 )

where ®(r) is the mean gravitational potential per mass generated by this whole system at r
and kg is the Boltzmann constant. This potential should satisfy a relation with number density
by the Poisson equation,

d?®(r) | 2dd(r)
dr? r dr

= 4nGmnyg(r) , ()

where G is the gravitational constant. A special solution to Eq. (1) and this Poisson equation
is myp(r) = kgT/ 2mGm?r?, known as the singular isothermal sphere (Binney & Tremaine,
1987). However, this solution has two problems: infinite density at ¥ = 0 and infinite total
mass. Even though we solve the equations with a finite density at » = 0, the solutions behave
xr2ata large r, and so we cannot avoid the infinite total mass problem. In either case, the
solutions are unrealistic.

Of course, real examples of SGS in the universe, e.g., globular clusters and galaxies, have
various structures with a finite radius. As for most globular clusters, it is known that their
number densities in real space have a flat core and behave as a power law outside this core.
King interpreted these profiles by introducing the new distribution function in phase space,
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known as the lowered Maxwellian;

—B(E—m®,) _
f(m)cx{e m®:) _ 1 for E < m®Py, 3)

0 for E > m®d;,

in which E is the total energy of a particle belonging to a globular cluster. This distribution
becomes zero when the total energy is greater than m®;, and so ®; can be understood as a
potential energy per mass at the surface of the globular cluster. Because the velocity of the
particle must be in the range of 0 < v < /2 {®; — ®(r)}, the number density niy(r) can be
obtained integrating f(r,v) as

2{D;—D(r
nxm (7) o« /0 ! : )}dv4m;2f(r,v) . (4)

Moreover, using a dimensionless potential W(r) = —mpB{®; — ®(r)} and integrating by
parts, the number density becomes

W(r)
nxm () o« eW(’)/O dge¢z%/2. (5)

As mentioned before, the potential energy and the number density has a relation through the
Poisson equation. Thus, W(r) must satisfy the following equation:

W) 2dW(r) 9 ngu(r) 6
drz T r dr a2 ngu(0)’ ©

where a = /9/{47nGm2Bnx\(0)} corresponds to the core radius. The number density
satisfying Eqgs. (5) and (6) can be calculated numerically as shown in Fig. 1. This is called
the King model (King, 1966). When W (0) is larger than about 5, the number density around
the origin can be represented by the following approximation:

@)

1

ngm(r) o AT 2/
which is shown as the red curve in Fig. 1.

Since King put forward this model, this number density has been applied to fitting for the
surface brightness of many globular clusters, for example as in Ref. (Peterson & King, 1975;
Chernoff & Djorgovski, 1989; Trager & King, 1995; Lehmann & Scholz, 1997; Meylan et al.,
2001), that is, most exponents of power law outside the core of globular clusters are similar
to —3 which cannot be explained by the model with the isothermal assumption. But, it is not
easy to see what kind of dynamics occurred in the system, because his procedure was done to
the distribution function in the steady state.

So, we will construct a theory which can explain the dynamics toward such a special steady
state described by the King model especially around the origin. The idea is to represent an
interaction by which a particle of the system is affected from the others by a special random
force described by a position-dependent intensity noise, in other words the multiplicative
noise, that originates from a fluctuation only in SGS. That is, we will use a special Langevin
equation, just as the normal Langevin equation with a constant-intensity noise, in other
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Fig. 1. Black curves denote the number density of the King model gy (r) as a function of the
radius normalized with the core radius, r/a, for several W(0). As the curve changes from left
to right, W(0) gets larger from 2 to 10 in steps of 2. The red curve means the approximated
formula, 1/ (1 + 2 /a?)3/2, for larger W(0).

words the additive noise, can unveil the dynamics toward the steady state described by the
Maxwell-Boltzmann distribution. However, we cannot introduce the randomness into the
system without any evidence. Then, we must confirm that each orbit is random indeed. Of
course, it is impossible to understand orbits of stars in globular clusters from observations.
Thus, we must use numerical simulations.

From the numerical simulations of SGS, the ground that we can use the random noise becomes
clear. The special Langevin equation includes additive and multiplicative noises. By using
this stochastic process, we derive that non-Maxwell-Boltzmann distribution of SGS especially
around the origin. The number density can be obtained through the steady state solution
of the Fokker-Planck equation corresponding to the stochastic process. We exhibit that the
number density becomes equal to the density profiles around the origin, Eq. (7), by adjusting
the friction coefficient and the intensity of the multiplicative noise.

Moreover, we also show that our model can be applied in the system which has a heavier
particle (5-10 times as heavy as the surrounding particle). The effect of the heavier particle
in SGS, corresponding to a black hole in a globular cluster, has been studied for long
time. If the black hole is much heavier than other stars, a cusp of the density distribution
appears at the center of a cluster (Peebles, 1972; Bahcall & Wolf, 1976; 1977). The observations
which suggest that intermediate mass black hole (IMBH, ~ 102 — 103M,) is in the globular
cluster in recent years are accomplished one after another (Clark et al., 1975; Newell et al.,
1976; Djorgovski & King, 1984; Gebhardt et al., 2002; Gerssen et al., 2002; Noyola et al., 2008).
Although these studies are very interesting, our model does not treat these situations: in our
model, the heavier particle is too lighter than IMBH. Our model corresponds small globular
cluster (10* stars) with only a stellar black hole (~ 1 — 10M¢).

Here, note that we have reported similar results in our previous letter (Tashiro & Tatekawa,
2010). In this paper, however, we demonstrate how we executed our numerical simulations.
Moreover, a treatment for stochastic differential equations becomes precise, and so the
analytical result derived by a different method changes a little.
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This paper is organized as follows. In Sec. 2.1, and Sec. 2.2, we provide brief explanations
about a machine and a method we used when we did numerical simulations, respectively. In
Sec. 2.3, we investigate number densities derived from our numerical simulations where all
particles of SGS with a mass m and a particle with a mass M interact via the gravitational
force. Then, we show the densities are like that of the King model and both the exponent and
the core radius are dependent on M. In Sec. 3.1, forces influencing each particle of SGS are
modeled. Then, using these forces, Langevin equations are constructed in Sec. 3.2. Section 3.3
makes it clear that the steady state solution of the corresponding Fokker-Planck equation gives
the same result with the King model. In Sec. 4, we discuss our results and make the relation
between King’s procedure and our idea clear. Section 5 gives a summary of this work.

2. Numerical simulations of SGS using GRAPE

2.1 GRAPE

SGSs require quite long time for relaxation. Furthermore, because only attractive force is
exerted on particles in SGS and the gravitational potential is asymptotically flat, we must
compute interaction of all particle pairs. When we treat N particles, the computation
of interaction becomes O(N?) by direct approach. By these reasons, we require huge
computation for numerical simulation of the evolution of SGS.

For time evolution of SGS, many improvements of algorithm and hardware have been carried
out. First, we consider integrator for simulation. For long-time evolution, both the local
truncation error and the global truncation error are noticed. These error occur deviation of the
conservation physical quantities such as total energy. For compression of the global truncation
error, symplectic integrator has been developed. The symplectic integrator conserves the
total energy for long-time evolution. We apply 6th-order symplectic integrator for the time
evolution of SGS. Secondly, we apply special-purpose processor for the computation of the
interaction. Most of the computation of the time evolution in SGS is 2-body interaction.
As special-purpose processors, GRAPE system has been developed (Sugimoto et al., 1990).
GRAPE system can compute 2-body interaction from position and mass of particles quickly. In
our study, we apply GRAPE-7 chip, which consists of Field-Programmable Gate Array (FPGA)
for computation of the interaction (Kawai & Fukushige, 2006). GRAPE-7 chip implements
GRAPE-5 compatible pipelines '. The performance of GRAPE-7 chip is approximately 100
GFLOPS and is almost equal to a processor of present supercomputers, but the energy
consumption of the chip is only 3 Watts. Using sophisticated integrator and special-purpose
processor, we have analyzed time evolution of SGS.

2.2 Symplectic integrator

For time evolution, we must choose reasonable integrator for simulation. For long-time
evolution, not only the local truncation error but also the global truncation error is noticed.
For example, 4th-order Runge-Kutta method has been applied for time evolution of physical
systems (Press et al., 2007). Although its local truncation error is O ((At)5), because its error
accumulates, the global truncation error increases during time evolution. For example, we

! GRAPE-5 computes low-accuracy 2-body interaction. If we treat collisional systems, ie. the
effect of 2-body relaxation cannot be neglected, we should use high-accuracy chip such as
GRAPE-6 (Makino et al., 2003). As we will mention later, because our simulation notices until 100 ¢,
we can simulate the systems with GRAPE-7 chip.
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apply 4th-order Runge-Kutta method for the harmonic oscillation.

2 2

T
H= 2 + T 8)
Using exact solutions, the orbit of the harmonic oscillation in the phase space draws a circle.
Of course, the total energy is conserved. On the other hand, when we apply 4th-order

Runge-Kutta method for time evolution, the total energy is decreased monotonically.

H() :% 1- 71_2 (AB® +0 ((At)7)} (*+4%) . ©)

The orbit of the harmonic oscillation in the phase space draws a spiral and it converges
to origin (p = g = 0). When we consider long-time evolution, 4th-order Runge-Kutta
method is not reasonable integrator. If Hamiltonian of physical system is given, we can apply
symplectic integrator which based on canonical transformation (Ruth, 1983; Feng & Qin,
1987; Suzuki, 1992; Yoshida, 1993). This method suppresses increase of the global truncation
error. In generic case, the symplectic integrator is implicit method. If Hamiltonian is
divided to coordinate parts and momentum parts, the integrator becomes explicit method.
The procedure of low-order integration becomes easy more than Runge-Kutta method. The
simplest integrator is called "leap-flog method" (2nd-order integrator).

p(r+5) = r0+ S0, (10
x(t+ At) = x(t) + At - p (t + %) , (11)
p(t+At) =p (t—l— %) + %p(x(t—i-At)) . (12)

Using leap-flog method for the harmonic oscillator, the following equation is satisfied.

1 At
E(p2 +¢%) + - Pq = const... (13)

Therefore the orbit in the phase space draws an oval. The deviation from the exact solution is
suppressed. To suppress the local truncation error, higher-order symplectic integrators have
been developed. We apply 6th-order symplectic integrator for time evolution of SGS (Yoshida,
1990).

pi = qi—1 +cibtp(gig) (1<i<8), (14)
q; = pj-1+djptp; (1<j<7), (15)

where pg = p(t),q0 = q(t),ps = p(t + At),q7 = q(t + At). The coefficients c;, and d; are
shown in Tab. 1.

The symplectic integrator conserves the total energy and the symplectic structure in
generic cases. When we use n-th order symplectic integrator, the local truncation error
of the total energy becomes O ((At)"*1). Furthermore, the global truncation error is not
accumulated (Sanz-Serna, 1988).
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i o d;
0.39225680523878 0.78451361047756
0.510043411918458 0.0235573213359357

—0.471053385409757 —1.17767998417887
0.06875316825252 1.31518632068391
0.06875316825252 —1.17767998417887

—0.471053385409757  0.0235573213359357
0.510043411918458 0.78451361047756
0.39225680523878

o NN o o W

Table 1. Coefficients of 6th-order symplectic integrator (Solution A in (Yoshida, 1990)).

In SGS, because the interaction at zero distance diverges, the local truncation error
would diverge in long-time evolution. For avoidance of this divergence, some kind of
softening parameter has been introduced to gravitational interaction. When the nature
of the pure gravity is analyzed, the regularization procedure of interaction is required
(Kustaanheimo & Stiefel, 1965; Aarseth, 2003).

2.3 Steady number density in numerical simulation

Now, we investigate the steady number density (SND) of the SGS with a mass m including
a particle with a mass M by numerical simulation. In particular, we show that SNDs have a
core and behave as a power law outside the core.

The system is composed of N = 10000 particles. At t = 0, all velocities of the particles are
zero and they are distributed by no(r) o« (14 2/a,?)~%/2 (0 < r < 4a,), which is the density
in real space of Plummer’s solution (Binney & Tremaine, 1987). In this SGS, we put another
particle with a mass M in the origin at ¢t = 0. We shall change the mass as M/m = 1,5, and 10.
Throughout this paper, we adopt a unit system where the core radius of Plummer’s solution
ap, the initial free fall time ¢ ffr and the total mass N - m are unity.

We started the numerical simulation under these conditions. For dynamical evolution, we
used GRAPE-7 at Center for Computational Astrophysics, CfCA, of National Astronomical
Observatory of Japan. For the computation of gravitational force, we applied Plummer’s
softening: the potential energy between the ith and jth particles separated by a distance r;; is

—Gm?/ A /rij2 + &52, where g is the softening parameter. We set e = 10~3. For time evolution,

we used 6th-order symplectic integrator (Yoshida, 1990). The time step for the simulation is
defined as At = 107°. We carried out simulations until + = 100 ¢ ff- During simulations, the
error in total energy was less than 0.1%.

First, most particles collapse into the origin within several ;. After approximately 20 f ¢, the
distribution becomes stable and the system reaches the steady state. Of course, we can confirm
whether the system becomes steady or not from the profile of the number density. However,
furthermore we also focus on the number of particles inside a sphere. Figure 2 shows the
change of the number inside the sphere with a radius 1 in time. During the collapse, the
number becomes large. After that, the number decreases, which means that many particles
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with positive energy evaporated from inside of the sphere, and so the number becomes about
6000 on average. For other radii, similar changes of the number in time can be seen.

V\/WWWA
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Fig. 2. Change of the number of particles inside a sphere with a radius 1 in time for
M/m =1,5,and 10.

SND is calculated by taking the time average during the steady state. In Fig. 3, we show the
logarithm of SND as a function of log for M/m = 1, 5, and 10. For each M, the SND has a
core and behaves as a power law at r larger than the core radius. Here, we fit SNDs around
the core by ng(r) = C/(1+1r*/a?)*. The results are summarized in Tab. 2. For M/m = 1
and 5, k ~ 3/2, which is similar to the exponent of the King model. The density at the origin
C increases as M increases, which is simply understood to be a result of many particles being
attracted by the heavier particle.

M/m a x 102 K C x107°

1 6.20£022 146+0.03 7.06+£0.14
5 6.06+0.18 146+0.02 757+0.13
10 568+0.14 143£0.02 8.13+0.12

Table 2. Best-fit parameters of the function C/ (1 + 2 /a?)* for steady number densities
shown in Fig. 3

3. Simple model

3.1 Forces acting on each particle of SGS

As shown in the last section, SND is the King-like profile even though the system includes
the heavier particle. In this section, in order to explain these results and derive this
non-Maxwell-Boltzmann distribution around the origin, we demonstrate a simple model
based on stochastic process, which is quite different from the King model.

The reason why stochastic process appears in the SGS is as follows. After the collapse, the
density around the origin becomes high. Thus, the particles around the region disturb the
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Fig. 3. Logarithm of the steady number density derived from our numerical simulation, 7(r),
as a function of logr for (a) M/m =1, (b) M/m =5, and (c) M/m = 10. In each figure, the
dashed curve and symbols denote a fitting curve ng(r) = C/(1+r?/a?)* and the result of
our numerical simulation, respectively.
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orbits of other particles repeatedly, so that their movements become random 2. As the time

at which this disturbance occurs, we introduce the local 2-body relaxation time ¢, (Spitzer,

1987):

B 0.0650(r)3 (16)
G2n(rym2In(1/es)

where o(r) is the standard deviation of the velocity at r; we adopted In(1/¢s) as the Coulomb

logarithm.

Figure 4 shows the logarithm of t,., which is calculated using the () and n(r) during the

steady state obtained from our numerical simulation, as a function of logr. As expected, ¢

around the origin is short. Our simulation continues after the collapse at about 80 ¢ ffr which

is sufficiently longer than the t, around the core. As radius increases, however, t,.; becomes

longer than the rest of our simulation time, which means that no stochastic motion occurs at

a large r. Therefore, note that our model is valid only in the neighborhood of the core.

frel (7’)
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Fig. 4. Logarithm of the local 2-body relaxation time t, as a function of logr for M/m =1, 5,
and 10.

When constructing our model, the following points are premised: the model describes the
stochastic dynamics near the steady state and the mean distribution is spherically symmetric.
As is well known, the gravitational force at r arising from such a spherically symmetric system
depends only on the particles existing inside a sphere with a radius r, and this attractive force
acts along the radial direction. In other words, this mean force —F(r) is the gradient of the
mean potential: —F(r) = —md®(r)/dr (< 0). Indeed, lim,_,o F(r) = 0. Hence, F(r) can be
expanded around the origin as

F(r) = cor +O(r%). 17)

It will be clarified later that the lowest exponent must be 1 and the coefficient ¢ is related to
the number density at the origin C as

co = 4nGm*C/3. (18)

2 Generally, a particle going into a region where the gravitational potential is deep, e.g. the core of SGS,
attains a high velocity. Because of many disturbances around the core, however, the mean velocity
of the particle decreases, which is, naively speaking, the dynamical friction (Binney & Tremaine, 1987).
Therefore, even though the heavier particle at the origin of the system makes the gravitational potential
deeper, there are few particles that can escape from the core smoothly. Then more particles are drawn
toward the heavier particle.
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For M/m = 1, we can identify another particle together with the other particles. Contrary
to this, we must consider the effect of the particle in the case M/m # 1. Now, we suppose
that the heavier particle exists at the origin. Then, the attractive force by this particle at r is
—Z(r) = —GmM/r*. We can estimate F(r) around this region as F(r) ~ cor = 47Gm>Cr/3,
where we used Eq. (18). Thus, .Z(r)/F(r) ~ 3Mr~3/4wCm. This ratio becomes significant
when r < 1072, since C ~ 10° as shown in Tab. 2. Therefore, if r is smaller than the radius,
particles are influenced by not only F(r) but also .Z (r), so that the core disappears. In fact, we
have performed a numerical simulation with the heavier particle fixed at the origin, where this
result is confirmed. On the other hand, Miocchi improved the King model in order to describe
the steady state of a globular cluster including an IMBH and reported that the density becomes
cuspy as the mass of the black hole increases (Miocchi, 2007). The nature of a globular cluster
when a massive black hole is much heavier than the surrounding star, have been studied as
mentioned in Introduction. In this case, the massive black hole stays at the center mostly.
Then, a cusp of the density distribution at the center appears. Because the heavier particles
in our numerical simulation are not very heavy, the particles are not trapped at the origin.
Therefore, we do not consider the effect of heavier particles explicitly and we suppose that the
particles influence SGS through the density at the origin C: as M becomes larger, it attracts
more particles and C increases, as shown in Tab. 2. Thus, ¢y is an increasing function of M.

It is natural to consider that the distribution fluctuates around the mean because of the many
disturbances. In fact, as shown in Fig. 2, the number of particles existing inside the sphere with
a radius 1 fluctuates around the mean value. The fluctuating part of the distribution should
not be spherically symmetric, so that this produces forces along not only the radial direction,
but also other directions. We assume that they are random forces and set their intensity at r
2H(r). In addition to such random forces resulting from the fluctuating distribution, a particle
at r is expected to be influenced by random forces generated from neighboring particles. We
set the intensity 2D, which is independent of position.

3.2 Langevin equations
Stochastic dynamics under the above assumptions is described by the following Langevin
equations in spherical coordinates: the radial direction

ma, + myi = —F(r) + \/2H(r)7:(t) + V2D& (1) , (19)
the elevation direction
mag + myrd = \/2H(r)yg(t) + V2D&(t) , (20)
and the azimuth direction
mag + myrsin6p = \/2H(r)ns(t) + V2DEp (), 1)

where a,, ag, and ap are accelerations along those directions; < is the coefficient of
dynamical friction in the low velocity limit, independent of velocity (Binney & Tremaine,
1987). In the Chandrasekhar dynamical friction formula, the coefficient is more
complicated (Binney & Tremaine, 1987; Chandrasekhar, 1943). However, we use the
coefficient in such a limit, because the density around the core is so high that particles around
there move slowly.
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Now, we focus on the overdamped limit of these equations, because we have interests in
the stochastic dynamics near the steady state. In the case of the normal Langevin equation
with a constant-intensity noise, we only neglect the inertial term. But, as for special Langevin
equations with noises whose intensity depends on a position, the new force —VH(r)/2mvy
should be considered additionally 3. Thus, the Langevin equations in the overdamped limit
becomes as follows:

radial direction : myi = —F(r) + \/2H(r)n,(t) + V2D, (t) — ﬁH’(r) , (22
elevation direction : myr6 = /2H(r)ne(t) + V2D&(t) , (23)
azimuth direction : myrsinf¢ = /2H(r)n4(t) + V2D&p(t) , (24)

where the prime indicates a derivative with respect to 7. The noises in each Langevin equation,
gi(t) and 7;(t) (i,j = r,0,and ¢), are zero-mean white Gaussian and correlate only with
themselves. Indeed, the correlation function is the Dirac delta function 4.

Here, revisit the position-dependent intensity noise. We have introduced such a noise in order
to represent a random force originating from the fluctuation of the distribution around the
mean value which yields the mean force —F(r). Thus, the first and the second terms on the
right-hand side of Eq. (22) must denote that the mean force acting along radial direction is
fluctuating. As a minimal formulation describing this situation, we propose the following
one:

—F(r){1—V2en (1)}, (25)

in which € is a positive constant. This can be realized by setting
H(r) = eF(r)?. (26)

Note that this fluctuating mean force is the essential feature for SGS. Since the gravitational
force is a long-range one, each particle is influenced from the whole system. The mean force
is produced by the mean potential which is decided by the number density in the steady state
through the Poisson equation. Obviously, this number density determines only the mean
positions of the particles, and they do not remain stationary at those positions: they fluctuate.
Then, the mean force also fluctuates. € indicates the extent of fluctuations. If € is 0, that is,
means the mean force does not fluctuate, the stochastic dynamics of each particle is governed
only by the constant-intensity random force originating from the neighboring particles. Then,
the Maxwell-Boltzmann distribution is obtained as the steady solution, by which the number
density of globular clusters cannot be explained as written in Introduction.

3 This force is necessary in order to interpret products in theses Langevin equations as Storatonovich
ones in the corresponding stochastic differential equations. See details in Ref. (Sekimoto, 1999).

4 It may not be natural that correlations of the random forces generated from the gravity are described
by the Dirac delta function. But in this paper, for simplicity, the correlation times are assumed to be
negligible. In other words, the time resolution of our simple model in the over-damped limit is assumed
to be much longer than the correlation times.
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3.3 Fokker-Planck equation and the asymptotic steady solution around the origin

From the Langevin equations (22), (23), and (24), we obtain the Fokker-Planck equation

governing the spherically symmetric probability distribution function (PDF) P(r, t)

0 D (2* 29 11

—P(r,t) = —— 4 — P(r,t -

ot (rt) (my)? {arz t ar} (r, )+ r2
€ 82 2 20 2

— ¢ —F -—F P(r,t),

gz { g PR+ 2 S F R | PG

in which we have replaced H(r) by F(r) using Eq. (26). Then, the PDF with the Jacobian
o(r,t) = 47r?P(r, t) satisfies the following Fokker-Planck equation.

d
a—r2F(r)P(r, t)

9 D 2 92 19
a0t = Gy {ﬁ N m}P(”) Ty art Ol
02 )
(mi)z {aﬂ B ar%} E(Ye(r,1) &7

This equation is useful when integrating with respect to r.
The steady state solution pst(r) satisfies Eq. (27) with the left-hand side zero. By integrating
the equation with respect to r, we have

D /
{ (711’)/)2 + (mi)zF(r)z} pst(r)
D 2 € , 2 F(r
- { m)2r  (my)? {ZF(”)F (r) - ;F(V)z} - m(iv)} pst(r) = const. . (28)

Now, we impose the binary condition that Pst(r) = pst(r)/(47tr%) and the derivative do not
diverge at the origin. Then, when r — 0,

pst(r) = O(”z) ’ (29)

and
lim pl (r) = lim 47t(2rPst(r) + r*PL(r)) = 0, (30)
r—0 r—0

by which the constant on the right-hand side of Eq. (28) is decided and we obtain

r {D + eF(r)z} obi(r) = — [rP(r) {2eF'(r) + my} —2 {D + eF(r)ZH ost(r) . (31)
Thus, if F(r) is obtained, pst(r) can also be obtained. Here, F(r) relates with SND, nst(r),
through the following relation, since —F(r) = —m®'(r).

F(r) + %F(r) = 4nGm*ng (r) (32)

Incidentally, the SND can be obtained by multiplying PDF in the steady state by total number
N:

nar) = NPw(r) = Z\Zf;tr(zr) : 33)
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Therefore, equation (32) can be represented as

F(r) + ;F(r) =0t (34)

In short, pst(r) and F(r) are closely connected with each other through Egs. (31) and (34).
Here, we focus on the asymptotic behaviors of them around the origin, since our model is
valid around there as mentioned before. Furthermore, due to this approach, we can treat
them analytically.

Assume that F(r) can be expanded around the origin with the lowest exponent k as follows.

(r) =¥ i or! (35)
1=0
Substituting this expression into Eq. (34), we find that pst () can also be expanded like
pk+1
pst(r) = N 2ch k+1+2)r (36)

After substituting both Eqgs.(35) and (36) into Eq.(31), we can obtain

2
00 k+1 0
2k I r I
{D+€r (12061V> }GN, 2l§:Ocz(k+l+1)(k+l+2)f

o0 oo o0 2
— [rk“ chrl {2erk1 Y es(k+s)r +m'y} -2 {D + erk (Z clrl> }]
1=0 s=0 =0

e
X onrE ch k+1+2)r (37)

Firstly, we compare the lowest order terms on the both hand sides of Eq. (37), so that the
following relation can be seen:

P+l k1
Therefore, we can conclude that k = 1. Secondly, compare the next lowest order terms
proportional to 7> and we get
1’2 2
D a2 f 34 r—ZDGNm Ay, (39)

and so ¢ = 0. Lastly, selecting only terms proportional to * from Eq. (37), we can find

r2 2 72 2

2 r 2_ 2
€r co co-2- 3+DGN 2c2-4-5-r = —r comfyGN 500 - 3+2DGN 5

2
CNni2 cp-5-17,

(40)
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from which the following relation can be obtained:

S5¢ ecy? my

3cg D 1+2€co ' 41
Without going into detail, we can see that c3 = 0 by comparison with terms containing 3. So,
pst(r) becomes as follows:

2

"
est(r) = G

3cor? 5¢ 6
— 2o (422
CNI2 ( +3C0r +0(r°)

2 2
_ ey (1 M) a2l o 42)
€Co

(3c0 + 5c2r2> +0(r°)

Here, if we set®

and k =1+ (43)

pst(r) can be expressed around the origin like

3¢ 72
GNm?2 (1 +7r2/a2)c”’

Pst(r) (44)
which yields
N 3¢o 1
at(r) = 47Tr2p5t(r) 4tGm? (1 +12/a2)x
Thus, we can derive the number density around the origin of SGS from the model using
stochastic dynamics.
The relation (18) is easily obtained by setting r = 0 on Eq. (45), that is,

(45)

_ 3C0
CAnGm?

C= l’lst(O) (46)

4. Discussion

In this section, we investigate the results derived in the preceding section and understand the
roles of two noises and the heavier particle in Eq. (45). Additionally, we discuss the difference
between the King model and our model.

As in Eq. (43), the exponent x must be larger than 1, which does not contradict our numerical
simulation shown in Tab. 2. In order for Eq. (45) to correspond completely to the King
model, xk = 3/2 or v = ecg/m = 4mGmeC/3 must hold. We can regard this relation
between the friction coefficient o and the intensity of the multiplicative noise € as a kind of
fluctuation-dissipation relation (Kubo et al., 1991), which usually plays an important role when
a stochastic process with a constant-intensity noise goes to the equilibrium state described by
the Maxwell-Boltzmann distribution.

5 The dimension of /D /ecy? is a length and m~ /2ecy is dimensionless. See Appendix A.
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The core radius a is proportional to a square root of the intensity of the additive noise D owing
to Eq. (43). Then, this intensity spreads the region where the density is almost constant. This
is recognized as the effect of this noise, which makes a system homogeneous and isothermal.
The existence of the core at globular clusters shows that such a diffusive effect does not
disappear even for the system with long-range force. In other words, all statistical mechanical
features observed in a system with short-range force, that is, normal system, does not change
drastically in SGS and this effect is still universal. Our model makes it clear that the special
distribution can be obtained just considering the fluctuation of mean force.

Now, let us examine the role of the mass of the heavier particle, M, in this system by a
naive discussion. As mentioned previously, ¢g is an increasing function of M. ¢y exists in
the denominators of 2 and x. Then, both values should be reduced when M is increased if
other parameters are independent of M. These theoretical expectations are consistent with
our numerical results shown in Tab. 2.

How the special distribution (45) changes if we do not consider the fluctuating mean force?
The steady state solution of Eq. (27) with € = 0 is

m?

Py(r) o™ D P (47)

Therefore, our result goes to a singular isothermal sphere, as discussed at the beginning of
this paper, by which the number density of globular clusters cannot be explained.

Here, we examine the relationship between the King model and our model. King transformed
the distribution function in the phase space in order to avoid a singular isothermal sphere.
In our model, we introduce the multiplicative noise into the system influenced by the mean
force and the additive noise whose PDF becomes Maxwellian in the steady state, as shown in
Eq. (47), so that the non-Maxwell-Boltzmann distribution (45) is derived. In short, although
these procedures seem to be different, they may have the same meaning at least around the
origin. However, we emphasize that the stochastic dynamics around there near the steady
state becomes clear owing to Egs. (19), (20), and (21).

5. Conclusion

In conclusion, the non-Maxwell-Boltzmann distribution (45) has been obtained using the
stochastic dynamics with the fluctuating mean force and the additive white noise. This
number density can be the same as that of the King model around the origin by controlling
friction coefficient and the intensity of multiplicative noise. Furthermore, our model can
describe the SGS having a heavier particle. Of course, these results are consistent with
our numerical simulation. We can say that such a stochastic dynamics occurs behind the
background of the King model. In short, the diffusive effect, which is represented by the
additive noise, is universal even in SGS, and it is particular to SGS that the fluctuation of
the distribution around the mean value producing the mean force makes influence on each
particle of this system, which our simple model can describe.

Finally, note that our result is available only in the neighborhood of the origin. Therefore,
we must derive the density globally by further extended model and investigate the difference
between the model and the King model.
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Appendix A. Dimensions of /D /ecq? and m-y /2ec

From now on, [e] represents a dimension of e. Since the correlation function of the random
noises §;(t) and 7;(t) (i,j = r,6,and ¢) is the Dirac delta function with argument ¢,

[&i()] = [7j()] = time™ /2. (A.1)
Thus, from the expression (25) whose dimension is a force, we can see that
[€] = time . (A.2)

Furthermore, from v/2D¢,(t) whose dimension is also a force, the dimension of D can be clear
like
[D] = force? - time = mass? - length? - time ™ . (A.3)

Owing to Egs. (17) or (18), the dimension of ¢y equals a force per length:

[co] = force - leng’ch*1 = mass - time 2. (A4)

As well known, the dimension of the damping constant, vy, is an inverse of time: [y] = time 1.

Thereby,

D mass? - length? - time 3
— | = \/ - 8 - . = length, (A.5)
€co time - mass? - time ™
and .
m mass - time™
[J} S =1 (A.6)
€Cp time - mass - time™
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1. Introduction

The evaluation of antenna radiation features requires the accurate determination of its far-field
pattern, whose direct measurement imposes to probe the field at a distance proportionally
related to the ratio between the squared dimension D of the antenna aperture and the
excitation wavelength (Fig.1). As a consequence of this, the direct evaluation of antenna
far-field pattern could require prohibitive distances in the presence of electrically large
radiating systems, with increasing complexity and cost of the measurement setup in order
to minimize interfering effects.
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Fig. 1. Antenna field regions.

To face the problem of impractical far-field ranges, the idea to recover far-field patterns
from near-field measurements (Johnson etal., 1973) has been introduced and is largely
adopted today, as leading to use noise controlled test chambers with reduced size and costs.
The near-field approach relies on the acquisition of the tangential field components on a
prescribed scanning surface, with the subsequent far-field evaluation essentially based on a
modal expansion inherent to the particular geometry (Yaghajian, 1986). The accuracy and
performances of near-field methods are strictly limited by the effectiveness of the related
transformation algorithms as well as by the measurement accuracy of available input data,
and in particular of near-field phase, which is very difficult to obtain at high operating
frequencies. In relation to the above aspects, two classes of methods are discussed in
this chapter, the first one concerning efficient transformation algorithms for not canonical
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near-field surfaces, and the second one relative to accurate far-field characterization by
near-field amplitude-only (or phaseless) measurements.

2. Efficient near-field to far-field transformations on strategic scanning surfaces

Near-field to far-field (NF-FF) transformation algorithms, taking also into account for the
presence of non-ideal probes, have been developed in literature for the most common
scanning surfaces of planar, cylindrical and spherical type (Yaghajian, 1986). All these
canonical near-field geometries have their own features, limiting in some way the applicability
of the related near-field technique. Due to its intrinsic simplicity, from both the analytical
and the computational viewpoints, the planar (Fig. 2(a)) near-field configuration (Wang,
1988) results to be the most attractive one, suffering however of a limited spatial resolution
which allows an efficient application only in the presence of highly directive antennas with
pencil beam patterns. Slightly greater computational efforts are required by the near-field
cylindrical (Fig. 2(b)) scanning (Leach and Paris, 1973), leading to obtain a complete far-field
azimuth pattern, with the only exclusion of elevation angles equal to 0 and 180 degrees, for
which the Hankel function is not defined (Johnson et al., 1973). A full pattern reconstruction
is assured by the near-field spherical (Fig. 2(c)) scanning (Ludwig, 1971), which however
requires a complicated measurement setup and a time consuming transformation algorithm
for the computation of the relative expansion coefficients.

L

Antenna
Under Test

(a) (b) (©
Fig. 2. Canonical near-field scannings: (a) planar, (b) cylindrical, (c) spherical.

In order to reduce the acquisition time as well as to enlarge the scan area, innovative
configurations have been proposed in recent years as variant to the most common
planar and cylindrical scannings.  These new acquisition geometries, namely the
helicoidal (Costanzo and Di Massa, 2004), plane-polar (Costanzo and Di Massa, 2006 a),
bi-polar (Costanzo and Di Massa, 2006 b) and spiral ones (Costanzo and Di Massa, 2007), give
a simpler, more compact and less expensive scanning setup, by imposing a continuous motion
of the antenna under test (AUT) and the measuring probe. However, due to the non-standard
location of the near-field data points, these innovative configurations strongly complicate, in
principle, the NF-FF transformation process, as a conversion to a rectangular data format,
in the case of plane-polar, bi-polar and spiral geometries, or to a cylindrical format, in the
case of helicoidal scanning, is generally required to enable the application of standard NF-FF
planar or cylindrical transformations. In some recent papers (Costanzo and Di Massa, 2004;
2006 a;b; 2007), direct NF-FF algorithms have been proposed to obtain the far-field pattern
from near-field data acquired on the above strategic geometries, by properly apply the fast
Fourier transform (FFT) and the related shift property (Bracewell, 2000) to avoid any kind of
intermediate interpolation. The theoretical details of the above efficient NF-FF transformation
procedures are discussed in the next sections.
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2.1 Helicoidal NF-FF transformation

In the helicoidal scanning configuration (Fig. 3), near-field data are acquired on a cylindrical
helix of radius r, at sample points P, (o, o, o), by imposing a simultaneous linear movement
(along z-axis) of the probe and an azimuthal rotation of the AUT (Costanzo and Di Massa,
2004).

Fig. 3. Helicoidal near-field scanning.

The tangential field components on the helicoidal surface can be expressed in terms a
cylindrical modal expansion (Leach and Paris, 1973), with coefficients a,, b, given by the
expressions:

A2 1 +oo 47T . .
bn(h)7Hr(12) (Aro) = m/_w /_n Ez(¢po, z0)e /" P0eM 20 dpydz, 1)
nh (2) aHV(IZ) 1 oo pF —jn ihz,
bn(h)mHn (Aro) — an(h) 3 (A7) |r=r, = RLOO Ln Ey(¢o,z0)e ool 'dpodz,

@)

where k is the free-space propagation factor, A = Vk? — h? and H,(,z) (..) is the Hankel function
of the second kind and order n (Abramowitz and Stegun, 1972).
In the standard case of a near-field acquisition on a cylinder of radius r,, integrals appearing
into equations (1) and (2) are efficiently evaluated by a two-dimensional FFT, by assuming
sampling spacings A¢ = 2/\—” and Az = %, a being the radius of the smallest cylinder completely
enclosing the AUT. The far-field is finally obtained in terms of asymptotic evaluation of
cylindrical wave expansion (Leach and Paris, 1973) as:

+o0 .
Eq(0,¢) = jsin® Y- j"bu(keosd)e"? 3
n=—oo
+o0 )
Ey(0,¢) = sind Z j"an(kcos)el"? @)
n=—o00

In the case of helicoidal near-field acquisition as illustrated in Fig. 3, the azimuthal and z-axis
coordinates are related by the equation:
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$o
—pro 5
20 =Py ®)
where p is the helix step, i.e. the distance between adjacent points along a generatrix. By
imposing p = %, near-field data on the cylindrical helix can be arranged into a matrix

A € CMxN pp being the number of helicoidal revolutions and N the number of azimuthal
samples for each revolution. Data distributed on the i — th column of matrix A are shifted

with respect to the first column by a quantity iAzy, where Azy = p%"r’. This particular
data arrangement leads to efficiently solve integrals involved in the computation of modal
expansions coefficients a,(h),b,(h) as given by equations (1) and (2). If we consider the
numerical implementation of integral:

1 oo e —jne, ,jhz
) = 5 [ [ B (gozo) e Tl gz ©)

which appears into equation (1), after some manipulations (Costanzo and Di Massa, 2004) we
can write:

N-1 ~ - 2mnr
In(h) = ) Eu (rag,h)e” /N 7)
r=0
where the term:
— - A27rhrAz¢
Ezs (rAg,h) = E; (rA¢,h)e ) ™ (8)

represents the discrete Fourier transform (DFT) (Bracewell, 2000) of the sequence
E; (rA¢,sAz), axially translated by a quantity rAzy through the application of the Fourier
transform shift property (Bracewell, 2000).

The computation procedure for integral (6), described by equation (7), can be summarized by
the following steps:

1. given the tangential component E, on the helicoidal surface, perform FFT on each column
of matrix data 4;

2. apply the Fourier transform shift property to the transformed columns obtained from step

7

3. perform FFT on the rows to obtain the final result in (7);

The outlined procedure can be obviously repeated for the computation of integral appearing
into equation (2), which involves the component Ey. Combined results are finally used to
determine the expansion coefficients ay, (1), b, (h), giving the far-field pattern components (3),
4).

The far-field reconstruction process from helicoidal near-field data is validated by performing
numerical simulations on a linear array of z-oriented 37 elementary Huyghens sources, A /2
spaced along z-axis (Costanzo and Di Massa, 2004). Near-field samples are collected on a
cylindrical helix of radius r, = 21.5A and height equal to 120, with an azimuthal sampling
step Ap = 2.38°. The effectiveness of the helicoidal NF-FF transformation procedure is
demonstrated under Fig. 4, where the computed far-field pattern for the dominant Egy
component is successfully compared with that obtained from a standard cylindrical NF-FF
transformation on a cylindrical surface having the same radius and height as those relative to
the helicoidal acquisition curve.
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Fig. 4. Far-field amplitude (Ey component) for linear array of z-oriented 37 elementary
Huyghens sources: comparison between cylindrical and helicoidal NF-FF transformations.

2.2 NF-FF transformations on innovative planar-type geometries

The coordinate system relevant to the acquisition scheme for the planar-type geometries is
illustrated in Fig. 5, where the measuring probe moves on the z = 0 plane to collect the
near-field coming from a test antenna mounted on the z-axis.

AUT

Fig. 5. Coordinate system relevant to the near-field planar-type acquisition scheme.

The mathematical relationship between the antenna field and the probe equivalent aperture
currents can be easily found by applying Lorentz reciprocity (Costanzo and Di Massa, 2006 a)
to have:

T(6,¢) = L;oo /j;:o q(x/’]//)ejk(x’sinﬂcos¢+y’sinf)sin¢)dx/dy/ ©)

Under the simplified assumption of an infinitesimal ideal probe, the left hand side of equation
(9) expressed in its scalar form, gives the antenna radiation pattern at coordinates (6, ¢), while
the term q(x',y") represents the near-field probed at coordinates (x/,y').



326 Numerical Simulations of Physical and Engineering Processes

If we consider a near-field polar surface of radius a, the following expression
(Costanzo and Di Massa, 2006 a) can be derived for the radiation integral:

T(6, ‘P / / P ‘P e]kpsmf)cos(qb ¢') pdp d(P (10)

where the coordinates transformations x’ = p’cos¢’ and y’ = p’sin¢g’ are applied.

The inner integral into relation (10) can be easily recognized as a convolution with respect
to the azimuthal variable ¢’, so the convolution theorem (Bracewell, 2000) can be applied to
simplify its computation in terms of FFT. By exploiting this convolution property, compact
expressions of equation (10) can be derived for the plane-polar, bi-polar and planar spiral
configurations, as it will be discussed in the follows.

2.2.1 NF-FF transformation on plane-polar geometry

In the plane-polar configuration (Fig. 6), near-field data are acquired on concentric rings filling
a disk of radius a, with sampling steps in the radial and azimuthal directions given by the
expressions:

A A
Bo=5 Ap=,- (1)

to being the radius of the smallest sphere enclosing the AUT.

AUT

Fig. 6. Plane-polar near-field scanning.

In the presence of polar near-field samples, equation (10) can be expressed in a compact form
as (Costanzo and Di Massa, 2006 a):

g 2 / / / / / /
160,9) = [ [ 0100, ¢)r(0,9.0',¢"dpldg (12)

where:

00" @) =p'ale' o), 1(8,,p',¢') = S04 (13)
The convolution form with respect to the azimuthal variable ¢’ leads to express (13) in terms
of FFT as:

T(0,¢) = /Oa Fl {71 (o, w)7(6,¢,0",w) } dp’ (14)
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where the symbol F{..} and the tilde (7) on the top denote the Fourier transform operator.

If we consider a plane-polar near-field data set at coordinates (mAp, nA¢), withm = 0,..M —
1,n=0,..,N —1, M being the number of concentric rings and N the number of sectors, the
radiation integral (14) can be numerically implemented as:

M-1N-1 2mn’w
T,¢)= ) Y. (31 (mAp,w)7(6,p, mAp,w)]el "~ (15)
m=0 n=0
where the terms: 41 (mAp, w) and 7 (6, ¢, mAp, w) represent the DFT of the sequences 41 (..)
and r(..) with respect to the azimuthal coordinate ¢’.
The computation scheme given by equation (15) can be summarized by the following steps:

1. multiply the near-field plane-polar samples by the radial coordinate 0
2. perform FFT on the result coming from step 1 with respect to the azimuthal coordinate ¢';

3. perform FFT on the exponential function elkp'sinbeos(9=¢") with respect to the azimuthal
coordinate ¢’

4. compute the inverse FFT on the product of results coming from steps 2 and 3;

5. perform summation on the result coming from step 4 with respect to the radial coordinate
/

0.
2.2.2 NF-FF transformation on bi-polar geometry

In the bi-polar geometry, the positions of the near-field samples lying on radial arcs can be
completely described in terms of the probe arm length L and the angles &, 8, giving the
rotations of the AUT and the probe, respectively (Fig. 7).

Fig. 7. Bi-polar near-field scanning.

As a consequence of this, a curvilinear coordinate system can be used to describe the scanning
grid and the radiation integral (10) can be expressed as (Costanzo and Di Massa, 2006 b):

,Bmax ﬂ7/+277 i H (B Al 4
o 12 [ (5 0, P o) g
2
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where Bj;qx is the maximum angular extent and the following transformations from polar
coordinates (p, ¢) to curvilinear coordinates (&, B) are applied:

o = 2Lsin (g), (p:uc—g (17)

The inner integral into relation (16) can be easily recognized as a convolution in the variable
o/, so the convolution theorem can be invoked to obtain the equivalent form:

',Bmux
T(6.9) = | F {1 (w, B)F0, w0, B} dp’ (18)

where:

0@, p) = L, f)sing,  r(6,9,00, ) = PEmm(E)os[(o48) ] g

Let us consider a bi-polar scanning grid, with near-field samples located at coordinates
(mAw,nAB), m =0,.M—1,n=0,..,N — 1, M being the number of arcs and N the number
of measurement points along each arc. Incremental steps Ax, AB coherent with the sampling
requirements inherent to the plane-polar configurations are assumed, by imposing relations
(11) into expressions (17). Under the above assumptions, the numerical implementation of
integral (18) is given as (Costanzo and Di Massa, 2006 b):

-1M-1 2nm -
Z Y. (1 (w,nAB)F (6, p,w,nAB)| el " (20)
n=0 m=0
where the terms §1 (w, nAB) and 7 (6, ¢, w, nAB) represent the DFT of the sequences g, (..) and
r(..) with respect to the azimuthal coordinate a’.
The above computation procedure can be summarized by the following steps:

1. multiply the near-field bi-polar data by the term L%sinp’;

2. perform FFT on the result coming from step 1 with respect to the azimuthal coordinate a';

3. perform FFT on the exponential function ¢ ZkLsmesm( )cos (¢ W 2)

azimuthal coordinate a/;

with respect to the

4. compute the inverse FFT on the product of results coming from steps 2 and 3;

5. perform summation on the result coming from step 4 with respect to the angular
coordinate f'.

2.2.3 NF-FF transformation on planar spiral geometry
The planar spiral scanning (Costanzo and Di Massa, 2007) is derived from the bi-polar
configuration by imposing the simultaneous rotation of the AUT and the measuring probe
in terms of angles &’ and B/, respectively. This gives a samples arrangement at positions
described by the coordinates s’ and «’ (Fig. 8), where:

/ /
= oc—(p—l—ﬁ 21)
d being the distance between the AUT and the measurement plane.
By applying the coordinates transformation (21) into equation (10), the following expression
is derived for the radiation integral (Costanzo and Di Massa, 2007):
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A
z

Probe arm

Fig. 8. Planar spiral near-field scanning.

fmax E+2ﬂ
T(G,qb) _ / d ﬂ,Z q(s " ) j2kds' s1n9cos<¢ o'+ 5 )d2 'ds da’ 22)
0 =
A compact form of equation (22) can be written as:
ﬂmnx +27T
T(0,¢) = / /, s, a\r(0,¢,s,a")ds' da’ (23)

where:

BN _ s
qi(s, o) =d*'q(s', o), 16,5 ,4) = o2 Slnocos[(¢+ 2) 'X] (24)

Following a similar procedure as that applied to the plane-polar and bi-polar configurations,
the convolution form of the inner integral into equation (22) is exploited to obtain the
following simplified form in terms of FFT (Costanzo and Di Massa, 2007):

Pmax

T(6,¢) = / CFl {71(s", w)7 (0, ¢,5",w) } ds’ (25)

0
Let us assume a spiral trajectory with near-field samples located at coordinates a;,, = mAx,
Sm = p[';”‘, m = 0,.,M—1n = 0,..,N—1, where pyu = a(a, + 27tn), a being the

Archimedean spiral parameter, N the number of loops in the spiral arrangement and M the
number of samples for each loop.

The above assumptions on the near-field samples distribution lead to express the numerical
computation of radiation integral (25) as:

-1M-1

Z Z 5]1 Spm, W (9 ¢, Sum, W )]EIZML (26)

n=0 m=0

where the terms §7 (Spm, w) and 7 (6, ¢, Spm, w) denotes the DFT of the sequences g1(..) and
r(..) with respect to the angular variable a’.
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A schematic overview of the processing method for far-field computation from near-field
samples on planar spiral geometry is reported under Fig. 9.

Near-field data

on planar spiral
4{ Multiply by coordinate s’}

[Perform FFT on exp function} [Perform FFT over coordinate a}

ZX)
Perform FFT '

[Perform sum over coordinate sﬂ

Far- Field
at coordinates 6, ¢

Fig. 9. Flow-chart of NF-FF transformation on planar spiral geometry.

2.2.4 Numerical validations on planar-type NF-FF transformation processes

Numerical simulations are performed on elementary dipole arrays to assess the validity of
the NF-FF processing schemes illustrated in the previous paragraphs. As a first example, a
near-field bi-polar acquisition is considered on a square array of 21x21 y-oriented Huyghens
sources A/2 spaced each others along x and y axes. The array elements are excited with a
20dB, n = 2 Taylor illumination (Elliott, 2003), scanned to an angle § = 15° in the H-plane.
A scan plane of radius a = 104, at a distance d = 6A from the AUT, is sampled with angular
spacings Ax = 5.2° and AB = 0.38°. The normalized amplitude of the simulated near-field
is reported under Fig. 10, while the H-plane pattern resulting from the processing scheme is
successfully compared in Fig. 11 with the exact radiation pattern coming from the analytical
solution.

As a further example, a circular array of 10 y-oriented elementary dipoles A/2 spaced is
considered, with excitation coefficients chosen to have a main lobe in the direction § = 10°
in the H-plane. Simulations are performed on a planar spiral with N = 20 loops and M = 136
points along each loop, at a distance d = 10A from the AUT. The normalized near-field
amplitude is shown in the contour plot of Fig. 12, while the H-plane pattern obtained from
the direct transformation algorithm is successfully compared in Fig. 13 with the exact array
solution.

3. Hybrid approach for phaseless near-field measurements

The standard near-field approach requires the knowledge of the complex tangential
components (both in amplitude and phase) on the prescribed scanning surface. Near-field
data are generally collected by a vector receiver and numerically processed to efficiently
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Fig. 10. Normalized bi-polar near-field amplitude for a 21x21 dipole array with Taylor
illumination.
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Fig. 11. Co-polarized H-plane pattern for a 21x21 dipole array with Taylor illumination.

evaluate the far-field pattern. The accuracy and performances of NF-FF transformations
essentially rely on the precision of the measurement setup and the positioning system, with
increasing complexity and cost when dealing with electrically large antennas. As a matter of
fact, accurate phase measurements are very difficult to obtain at millimeter and sub-millimeter
frequency ranges, unless expensive facilities are used. To overcome this problem, new
advanced techniques have been recently developed which evaluate the far-field pattern from
the knowledge of the near-field amplitude over one or more testing surfaces (Isernia et al.,
1991; 1996). Generally speaking, two classes of phaseless methods can be distinguished, the
one based on a functional relationship within a proper set of amplitude-only data (Pierri et al.,
1999), the other adopting interferometric techniques (Bennet et al., 1976). In some recent
works (Costanzo et al., 2001; Costanzo and Di Massa, 2002; Costanzo et al., 2005; 2008), a
novel hybrid procedure has been proposed which combines all the best features of the two
kinds of phaseless methods. A basically interferometric approach is adopted, but avoiding
the use of a reference antenna as required in standard interferometry. The phase reference is
directly obtained from the field radiated by the AUT, which is collected by two probes on two
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Fig. 12. Normalized bi-polar near-field amplitude for a 21x21 dipole array with Taylor
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Fig. 13. Co-polarized H-plane pattern for a 21x21 dipole array with Taylor illumination.

different points along the scanning curve to interfere by means of a simple microstrip circuit
(Costanzo et al., 2001; Costanzo and Di Massa, 2002). A certain number of sets of retrieved
near-field phase results from the application of the proposed interferometric technique. Each
set includes phase values on different measurement points, apart from a constant phase shift
to be determined. The union of these sets provides the full near-field phase information
along the scanning curve, but a complete characterization obviously requires the evaluation
of all unknown phase shifts, one for each set. This problem is solved by taking advantages
of the analytical properties of the field radiated by the AUT. In particular, a non redundant
representation is adopted which is based on the introduction of the reduced field (Bucci et al.,
1998), obtained from the original field after extracting a proper phase function and introducing
a suitable parameterization along the observation curve. Following this approach, the
radiated field on each scanning line is easily identified from the knowledge of the dimension
and shape of the AUT. The procedure is repeated along a proper number of observation curves
to cover the whole measurement surface. The proposed approach gives a hybrid procedure
placed "half the way" between interferometric techniques and functional relationship based
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methods. In particular, it takes advantages of the interferometric approach to significantly
reduce the number of unknowns in the phase retrieval algorithm. Although the functional
to be minimized is highly non-linear, the lower number of unknowns, given by the phase
shifts, allows an accurate and fast convergence to the solution. Furthermore, the absence of a
reference antenna gives a simpler and more compact measurement setup.

3.1 Theoretical formulation of hybrid phase-retrieval technique

Let us consider an observation curve C over an arbitrary scanning geometry (Fig. 14), with
a sampling step As = A/2 and a separation d = iA/2 between two adjacent interference
points, i being an integer greater than one. Two identical probes simultaneously moving
along the measurement curve (Fig. 14) are used to obtain four amplitude information, namely
(Costanzo et al., 2001; Costanzo and Di Massa, 2002; Costanzo et al., 2005):

Vi2, Vel i+l Vil (27)
where:
Vi=Vi|-d?, Va=|Vy| o (28)
are the complex signals on a pair of interference points along C.
zA
R
w | Probe 1
Probe 2 ¢
As
S
C
X AUT
y

Fig. 14. Observation curve C with probes positions.

Intensity data (27) are processed to give the phase shift Ap = ¢; — ¢ by means of the
following interferometric formula (Costanzo et al., 2001; Costanzo and Di Massa, 2002):
Vi +jVal? = [Vi* — [1a]?
Vi + Va2 = V12 = V]2

Ap = tg_l (29)

Let be:

E(s) = |E(s)] - &/7®) (30)

the field radiated by the AUT on the observation curve C, where parameter s denotes the
curvilinear abscissa along C (Fig. 14). If we suppose to scan 2N+1 measurement points (N
even), the application of equation (29) gives a number of sets of complex near-field data equal
to i, namely (Costanzo et al., 2001; 2005):
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[E (s(l)) ,E (5(2)> = (5(2)> el F (5(3)> = (5(3)) oA,
. E (s<,-)) =€ (s(i)) -e]M"*l} (31)

wherein:

(32)
J(=N+2i-1),

N[ >

(-N+3i—1)

A
-

The terms ¢ (5(2)> ,€ (5(3)) S s € (s(,-)) into expression (31) are known quantities and the
phase shifts A¢q, A¢y,...,Ap;_1 are the unknowns to be determined. If we change
APy, A¢y, ..., Ap;_1 € [—m, 7], expression (31) gives the set Sy, of all fields compatible with
the measured data. The field radiated by the AUT is so given by the intersection S;;; NSy,
where S 4 is the set of all fields that the AUT can radiate.

In order to successfully retrieve the unknown phase shifts A¢y, A¢y, ..., Ap;_1, anon redundant
representation is adopted which substitutes the original field (30) with the reduced field
(Bucci etal., 1998) F(Z) = E(&) - ¢/¥(®), obtained after extracting a proper phase function
P(&(s)) and introducing a suitable parameterization &(s) along the observation curve. A
proper choice of these parameters leads to approximate the reduced field by a cardinal series
of the kind:

ZE in)-e AR @ [w( — &n)] (33)

where ®(x) is the M function or the Dirichlet function, &, = X”—{fv are the positions of

non-redundant samphng points, while N” represents the number of non redundant samples
falling in the measurement interval.

The above relation, discretized in the M measurement points, say ¢, m = 1,..., M, can be
written in matrix form as (Costanzo et al., 2005):

r==A-s (34)

where s is the array of the reduced field values in the non redundant sampling positions and
r is the corresponding array of the reduced field values at the measuring points . Due to the
representation error and the presence of noise usually corrupting measurements, data do not
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belong in general to the range of matrix A. Consequently, the following generalized solution
is adopted:

] N

A1, Aé?,-f--,M’H a (Sm’ SA) (35)
The term d(., .) into equation (35) represents the distance between the two sets, while S % is the
set of all reduced field (evaluated at the M measurement points) that the AUT can radiate.
The distance d between the two sets is numerically evaluated by introducing the projector
operator P = A AT onto the range of matrix A, At denoting the pseudoinverse of A.
Consequently, the near-field phase retrieval involves the finding of: B

min r(Adr, Ada, .o, Db 1) —
Ay, A¢2,‘.‘,A¢i71“’( $1, Ap2 $i-1)

Pr(Ady, Ada, ..., A1) (36)

which can be easily performed by a suitable least-square procedure.

3.2 Experimental validations of hybrid phase-retrieval technique

The hybrid phase-retrieval technique is experimentally validated by designing a
multifrequency prototype properly working within X-band. Two rectangular waveguides
used as probes are connected to the microstrip circuit in Fig. 15(a) for obtaining the required
amplitude information. Measurements are performed on a standard X-band pyramidal horn
(Fig. 15(b)) by assuming a cylindrical scanning geometry of 47x85 points along z and ¢,
respectively, with sampling steps Az = A/2 = 1.5cm and A¢ = 4.23° at different frequencies.

(a) (b)

Fig. 15. (a) Microstrip circuit and (b) test setup for phaseless near-field measurements.

The near-field directly measured at one output of the integrated probe is reported under Figs.
16-17 for both amplitude and phase at two different frequencies, namely f = 8GHz and
f = 10GHz. The interferometric formula (29) is used in conjunction with the minimization
procedure (36) to obtain the retrieved near-field phase, whose agreement with the exact one is
illustrated under Figs. 16(b)-17(b) along the cylinder generatrix at ¢p = 90°.

The standard NF-FF cylindrical transformation (Leach and Paris, 1973) is then applied to
obtain the far-field patterns of Figs. 18-19. In particular, a good agreement between results
obtained from direct and retrieved near-field phase can be observed under Figs. 18(b)-19(b)
for the H-plane.
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Fig. 16. (a) Measured near-field amplitude on the cylindrical surface and (b) near-field phase
(retrieved and measured) on the cylinder generatrix at ¢ = 90°: frequency f = 8GHz.
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Fig. 17. (a) Measured near-field amplitude on the cylindrical surface and (b) near-field phase
(retrieved and measured) on the cylinder generatrix at ¢ = 90°: frequency f = 10GHz.
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Fig. 18. (a) 3-d view of radiation pattern and (b) H-plane obtained from exact and retrieved
near-field phase: frequency f = 8GHz.
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Fig. 19. (a) 3-d view of radiation pattern and (b) H-plane obtained from exact and retrieved
near-field phase: frequency f = 10GHz.

4. Conclusion

Innovative techniques for near-field antenna testing have been presented in this chapter.
Two primary aspects, namely the reduction of both measurement time and cost setup on
one hand, and the accurate near-field phase characterization on the other hand, have been
accurately faced. For what concerns the first focus point, accurate and fast near-field to
far-field transformations on new strategic geometries of helicoidal, plane-polar, bi-polar
and planar spiral type have been presented. On the other hand, the problem of accurate
phase retrieval at high operating frequencies has been faced by presenting a hybrid
interferometric/functional-kind approach to obtain the antenna far-field pattern from a
reduced set of amplitude-only near-field data acquired on a single scanning surface. All
discussed procedures have been successfully validated by numerical and experimental tests.
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1. Introduction

In the last decades, several surveys and research works have reported a decrease in
pelagic fish resources in the Mediterranean sea, with the exception of the Adriatic sea. In
fact, in this area, an overall decrease of stocks of fish species was reported as opposed to
the simultaneous increase in others (Picinetti 2008). Fishing methods that use attractive
elements of fish such as light and the electric current are used in many parts of the world.
In this regard, the attraction of light, which exploits the phototropism of certain fish
species is widely used, for instance, by the famous Japanese method for squid catching or
electro-fishing techniques of bluefish in use throughout the Mediterranean. Also in
freshwater lakes and rivers is very common to use electro-fishers to attract and capture
fish. Regarding the electrical fishing in salt water, various experiments have been carried
out to develop this new technique (Kolz,1993; Kurk,1971,1972; Roth et al., 2006). These
studies were mainly carried out in the United States, France and Soviet Union
(Blabcheton,1971; Diner & Le Men, 1971; Kolz, 1993; Van Harreveld, 1938). The basic
elements that must be taken in consideration for the personnel who, for the first time, is
preparing to use a sea electric attraction system are, first and foremost, the safety of
operators and possible damage to fish. To understand these effects, it is necessary to know
some basic principles of electrical circuits and the chemical-physical characteristics of
water and fish subjected to different types of current. Regarding the former, it is
important the knowledge of circuit features such as the power and characteristics of an
electric generator, the current type, shape and use of electrodes (anode and cathode). The
application of electric fields in non homogeneous systems consisting of fish and salt water
is far more difficult than in freshwater conditions. This point is of fundamental
importance and its understatement, in fact, may impair or reduce the efficiency of
electrical fishing. Electric fishing is based on the principle of introducing an electric
potential gradient in the water body, between one or more cathodes and one anode. The
perception of this potential gradient by fish is function of their position towards
electrodes and of their conductivity in respect to water’s, as well as of temperature, size
and species. The potential gradient produces different effects on fishes depending on the
intensity and type of current used. Those effects are known and described since the end of
1800 (Van Harreveld, 1938). Currents used in electro-fishing can be continuous (DC),
alternate (AC) or pulsed (PDC), depending on environmental characteristics
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(conductivity, temperature) and fish to be sampled (species, size). The three current types
(DC, AC, PDC) produce different effects. Only DC and PDC cause a galvanotaxis reaction,
as an active swim towards the anode. With AC this phenomenon is not possible due to the
continuous changing in polarity of the electrodes. Fundamental limit to the application of
electric fishing in sea water is given by the high conductivity of salted water, that being
much greater than animal tissues causes the current to flow around the fish instead of
passing through it. In high conductive water, PDC is the mainly used current form,
because of the lower power demand, at parity of result, compared to DC (Le Men, 1980;
Beaumont et al., 2002), and also causes galvanotaxis in fish (Kurc et al., 1971). Fish in fact
swims towards the anode under the effect of the muscle contraction given by each electric
impulse (electrotaxis) until narcosis occurs (tetanus) (Beaumont et al., 2002).

2. Electro-fishing theory

2.1 Definition of an electric field

Materials consist of particles characterized by positive electric charges (protons) and
negative (electrons), while others have neutral charge (neutrons). In various materials, in
particular in metals, electrical charges have the ability to move. In reality, there is not a real
movement of electrons, but a transfer of energy through collisions between electrons. The
movement of charges, which occurs at a given time, is defined as movement of electric
current (I) and is measured in amperes (A). The relationship between the aforementioned
variables is as follows:

1=Q/t @

where:

Q=charge in coulombs

I = electrical current in amperes

t = time in seconds.

Table 1 shows the basic terms, definitions and units of measurement of variables used in
circuit theory and electric fields.

Term Symbol Unit
Electric charge Q coulomb
Voltage energy \% volt

Current load/time I ampere
Electric resistance R ohm
Energy power/time P watts
Energy power*time W watt/hour
Resistivity fraction x
disz;mce P ohm/em
Conductivity 1/P uS/cm
Voltage gradient variation e volts/
Current density J amp/cm?
Power density D watt/cm3

Table 1. Terms, symbols and unit used in the current field theory
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The electric current is made up of a flow of charges which tend to restore a state
of neutrality between two electrically charged bodies. If the two bodies become neutral,
the current ceases immediately to flow (because there is no more a force of attraction
between the two bodies). The circulation of electric current is higher in materials that have
a large amount of free electrons as conductors. In this way, the electric current flows from
a region with high negative charges to one with positive charges. The electric current (I)
is measured with the ammeter. The voltage (V) is defined as the potential difference
between two points of the electrical circuit and is measured with a voltmeter. With
a voltage V and a current density I, the power P can easily calculated as P = V x 1. The
electric circuits can be classified into two main types: circuit in series or parallel. In the series
circuits, all components (generator, switch and the transformer) form a single path. Instead,
the circuits in parallel are divided into branches. If two different charged electrodes
are immersed in a liquid, several lines of force are created between the two poles. Along
these lines of force flows the electrical current. These lines of force coincide with the current
lines (Fig.1).

ANODE

C \THODE

Fig. 1. Force lines are formed between the anode (positive) and cathode (negative) immersed
in a liquid

Now, let's take an example of a potential difference of 400 V between the two poles of the
field. This potential difference decreases gradually starting from the anode (+) going to the
cathode (-) to finally reach the value of 0 volts at the cathode. Consequently, we can see that
on the same force line, voltage values varie according to the position. We can also get lines
that have the same voltage values. These lines are called equipotential lines (Fig.2).
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Fig. 2. The equipotential lines are obtained by bringing together points of equal voltage

The figure obtained resembles a map in which lines mark the same altitude.

Fig. 3. Voltage curve between the anode (+) and cathode (-) located at a distance of 20 m
apart
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Potential differences are measured along a line of force (Fig. 3) . The greatest potential
difference is obtained at the two electrodes A and C. Approaching the cathode, voltage
decreases. For example at point B, midway between the two poles, voltage difference is 200
V. There is a progressive decrease until it reaches the value 0 at the cathode itself. This
means that an object placed in an electric field is subjected to a potential difference. This
potential difference varies depending on the location of the electric field where the object is
placed and is greater in the vicinity of one of the two poles. Inside an electrical conductor,
the movement of electrons is slowed down from their original path when the moving
electrons collide with others. This phenomenon is called electrical resistance (R).
The electrical resistance varies depending on the conductor. In practice, the electrical
resistance results in a reduction of the current flow and a loss of energy. The electrical
resistance increases in relation to the length of the conductor and decreases with higher
cross-section values. If R is the total resistance of a conductor, the formula to determine the
value will be:

R=pl/s 2
where:
R = electrical resistance in ohms
1 = length of conductor in m
s = section in mm 2 conductor
p = coefficient of electrical resistivity
The ratio voltage / current intensity measured in an electrical circuit has a constant value. In
fact, being the resistance equal, the change in current intensity is directly proportional to
the voltage. This relationship is explained by the second law of Ohm:

R=V/I (©)

I=V/R @

where:

R = electrical resistance in ohms

V = voltage in volts

I = electric current in amperes

Conductivity is reciprocal of resistance. The conductivity is measured in siemens (S). The
conductivity varies for each material. Once known essential elements regarding electrical
power and circuits is possible to build a system for electrical fishing.

2.2 Types of current waves

The current is a continuous movement of electricity between two points on a conductor that
are at different potential. The different types of electrical current produce different electrical
shapes or wave forms.

The three most important type of electric currents are:

- Direct Current (DC)

- Alternating Current (AC)

- Pulsed Direct Current (PDC)

Direct current produces a unidirectional, constant electrical current. DC is a current of equal
intensity with a smooth continuous flow that occurs from pole to pole. Strength and
direction remain constant.
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Alternating Current (AC) is an electrical current in which the direction of current reverses a
number of times per second. Alternating current produces a wave form that consists of a
sequence of positive and negative waves that are equal, usually sinusoidal, and follow each
other alternately at regular time intervals. An alternating current is a current that changes
strength and direction of propagation with a time constant. For example, a period lasts 1/50 of
a second. Frequency is the number of periods per second. The unit of frequency is the hertz (Hz).

The Pulsed direct Current (PDC) is, in the simplest case, a direct interrupted current. This
current flows in the form of pulses.

UL

A period (duty cycle), in this instance comprises the pulse duration and pause.
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2.3 Electrical fishing systems
Electro-fishing is the use of electricity to capture fish. The essential components of an
electrical circuit are:
- The generator. The generator produces electricity. It is usually classified as a voltage
source or current source. Conventional circuits are generally used for generating power.
- Conductors. Conductors are used to carry electric current from the generator to the
electrodes.
- The transformer. The transformers allow to convert electrical energy into another form
of energy (mechanical, thermal, etc.).
The electricity is generated by the generator whereby a high voltage potential is applied
between two or more electrodes that are placed in the water. In the case of sea water, the
voltage potential is created using a pulsed direct current which produces a unidirectional
electrical current composed of a sequence of cyclic impulses. Sometimes you can have more
than one cathode and anode. In a fishing system, with a single anode and a cathode, lifting
them up from the water opens the circuit. The same is not true in a systems with multiple
anodes and cathodes. Being arranged in parallel, their lifting from the water does not break
the circuit and therefore does not terminate the action of fishing, at least until then the water
is applied to the cathode or anode. However, even if they are applied more anodes, the
circuit is opened by lifting the cathode from the water. In the systems for electrical fishing,
water and fish are a component of the circuit. The basic requirement of electrical fishing
equipment is to transfer energy from water to fish. The resistance of the fish is generally
different from that of water. The difference between water resistence and resistance of fish
can reduce the energy transmitted and thus the capture efficiency of the equipment. Thus,
difficulties encountered in the use of electrical fishing are due mainly by transfer of
adequate amounts of energy from the generator to the fish. Most systems are equipped with
instruments for measuring the voltage (V) and current intensity (A). Characteristics of the
current can be easily changed. In particular, for the PDC, it is possible to change the number
of pulses and the pulse width. In electrical circuits there are two types resistances: the
resistance inside the system and the load resistance. The maximum efficiency of the system
is reached when the internal resistance is equal to the current load. An increase in resistance,
causes a loss of power and an increase in tension. The maximum power transfer occurs
when the current load is equal to 1, and this happens, as mentioned earlier, when the
current load equals the internal resistance. The internal resistance is formed by the cathode,
while a variable part, is composed by fish and some water. When the conductivity of the water
and fish are the same, all the applied power will be transferred to the fish. The conductivity
of sea water varies with the temperature and salinity (Fig. 4). The conductivity of water is a
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very important factor that has already been introduced in the first part. We can define the
specific conductivity of water as the conductivity of a cube of water of 1 cm side. This depends
on the specific conductivity of dissolved materials and water temperature. Water is dissociated
into its chemical components formed by ions (OH- and H* ions produced from H,O
molecule). These particles by their charge allow the transmission of the current. In addition,
the higher the salt content of water, the greater the ion content and therefore the greater the
conductivity. Water temperature also affects its conductivity. In fact, under conditions of high
temperature, ions increase their mobility and decline with a lower temperature. The specific
conductivity decrease of 2.5% per degree (1 ° C) lowering the temperature. The specific
conductivity is measured by the conductometric. We have already seen that the specific
conductivity is measured in microseconds / cm (microsiemens per cm). The specific
resistance and specific conductivity are calculated using the relationship: 1 Ohm x cm =
1.000.000/ pS/ cm.
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Fig. 4. Effects of salinity and temperature on salt water conductivity

In order to optimize the electro-fishing system in salt water, we should know in advance the
average conductivity values of water and fish and water temperature of the area of interest.
Figure 5, the horizontal axis indicates the ratio water/ fish conductivity and the vertical axis
the percentage of the maximum transfer of power.

The maximum value (100%) is obtained when the ratio water conductivity/fish conductivity
is equal to 1. While the conductivity of water is easily determined, this is not the case for fish
and therefore, for all practical purposes, it is assumed that the latter is equal to115 pS/cm
(0.0115 S/m), as recommended by Miranda and Dolan (2003). The choice of this value,
although not exact for all species, is essential for the standardization of electrical fishing. In
practice, in waters with low conductivity, there is a decrease in the current voltage (volts),
while in waters with high conductivity, there is a reduction in the current density (amperes).
The standardization of electrical fishing require precise measurements of the electric field.
These can be made using some instruments such as oscilloscopes or meters. In the absence
of such instruments, the biologist should observe the behavior of fish, identifying the most
appropriate adjustment of the power and pulse. Physical characteristics of the electric field
change not only as a function of the current, but also in relation of the shape, size, position,
distance and orientation of the electrodes. In all environments and conditions, the goal is
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Fig. 5. Effect of fish and water conductivities on maximum power transfer

always the same: to bring the fish to the surface in the vicinity of the operators. In general,
the cathode must have an area equal to or greater than the anode, thus avoiding power
dissipation at the cathode. Another element that is very important but often overlooked, is
the shape of the electrodes. In particular, attention should be paid to the size of the anode
which should be of a diameter as large as possible to avoid causing damage to the fish. The
increased diameter results in an increase in the size of the electric field which decreases the
current intensity in the vicinity of the anode itself. Therefore, these solutions are
recommended especially in waters with high conductivity, which require the use of small
anode surface to prevent overloading of electrical generators. The anode can have different
shapes, and usually the ideal shape is a sphere that ensures a uniform dispersion of energy.
However, that solution would be impractical for weight, size and strength. Therefore, a
more practical device consists of a chain consisting of 2 cm rings. Reducing the distance
between the anode and cathode may be important to increasing the strength of the field. In
this case, we need to prevent the contact of the two electrodes in order to avoid damage to
the electrical generator. The electrodes are the link between the power generator and water
and must, therefore, be located in such a way to allow the unit to operate under optimum
conditions. The proportions of the size of the anode and cathode can be changed from 1: 4 to
1: 10. The efficacy is greatest when the electrodes are opposite each other on the side of their
larger surface area. Several studies have shown that it is above or close the electrical circuit
that the nervous system and muscle of the fish is stimulated.

2.4 Effects of electricity on fish

The two variables that can be modified using the PDC system are the pulse duration or
amplitude (typically 5 msec) and the number of pulses per unit time (frequency: number of
pulses per second or Hertz). The frequency typically used is 50/60 Hertz. Given the
variability of the pulse, this current has a maximum voltage and an verage intensity. To
catch fish, both variables are important, although the intensity of the peaks may assume
primary importance. Fish are attracted to the anode (positive galvanotassia) probably
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because the front of the brain seems to carry negative charges. It should be noted, moreover,
even if they have the same nervous system, not all species respond similarly to electric
fishing and also in the same species, the answer change depending on the size. Larger fish
tend to be more vulnerable because of the current pulses intersect both axis cephalo-caudal
and along the dorsal-ventral. From this point of view, it is worth noting that short-term
treatments reduce the mortality or damage of the skeletal system. Instead, for smaller fish,
and in general for all fish, any damage can be caused by the duration and frequency of
pulses. These phenomena can be amplified by the special structure of fish skeletal muscle. In
particular, it is important the percentage of muscle mass relative to total body mass.
Another element that regulates the response of fish to electric applications is the magnitude
and nature of the scales. Large and thick flakes, reduce the catchability, by contrast, the
small scales are increased. Electrical fishing involves a complex system with a series of
interactions between the electric field, water and fish. In fact, the study of
electrophysiological responses of fish is based almost exclusively on laboratory experiments
performed under controlled conditions. In fact, these experiments are only a part of the real
complex natural situations. In this part, the basic reactions of fish in the electric field are
discussed.

The typical reactions of fish to electric current are as follows:

e Electro-taxis: forced swimming towards the anode

e  Electro-narcosis: muscle relaxation or stunning (fish swims)

e  Tetanus: muscle stiffness, immobilization

The PDC causes reactions in the fish which are similar to those produced by a constant
current, but, in the case of PDC, effects depend on the frequency (the number of pulses per
unit time). The first reaction of fish is spasms and convulsions whose intensity depends on
the number of electrical impulses.The second reaction (electro-taxis) depends on the shape
of the pulses. During the third reaction (electronarcosis), the swimming motion decreases
abruptly and the fish is immobilized. The ultimate goal of a well-conducted electrical fishing
is the achievement of electro-taxis, i.e. the stage (or situation), where the fish is oriented
toward the anode and swim actively to the electrode. It is also evident that it is important
the achievement of the third stage in which the fish can not swim actively. The electric
current density is the basic element that influence the reactions of fish. The current density
at which the fish is exposed depends mainly on fish body size and its structure of epidermis.
Using an electrical fishing equipments in marine waters, we can find that the specific
resistance of fish body is smaller than that of water. As illustrated in figure 6, all the lines of
force are directed toward the body of the fish. As a consequence of the lower resistance
offered by fish compared with the aquatic environment, the electric force lines are
concentrated in the body of fish.
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It ‘s possible to define a minimum value (threshold) for the desired reaction. The current
density is measured in A/m?2 (amperes per square meter) or pA/mm?2 (microamperes per
square millimeter). By definition, this is the intensity of current flowing through a unit
surface perpendicular to the lines of force of the electric field. This current density
required to obtain a specific reaction in the fish is fairly constant and characteristic for
each species of fish. By means of laboratory experiments, current density values have
been determined for a given species and a given length of fish. This value is the potential
difference between the head and tail of the fish. This value is required to activate the
physiological reactions of fish. In summary, to obtain a certain reaction, if the length of
the body increases, the density of current required decreases being constant the potential
difference of the body. In other words, the potential difference of the body necessary to
obtain electro-taxis will be reached more rapidly in larger specimens. Furthermore, fish
exposed to a potential difference below a threshold value are not attracted and they can
escape. Extensive research shows that the application of electrical fishing made as the
right criteria is not harmful to fish. Only by applying inappropriate techniques such as
voltage too high and for long periods will create serious drawbacks. The physiological
reactions of fish to an electric field can be divided into:

- involuntary reaction

- voluntary reaction

The involuntary reaction consists of the first movement or contraction of the fish body. The
curvature (bending) of the body is followed immediately by a voluntary backlash in the
opposite direction. At this point we have three possible effects on the orientation and
movement of fish.

1) a fish is swimming oriented with the head towards the cathode

but after some time, the fish is no longer able to swim. When fish is showing cramps, it stops
swimming and voluntary movement is transformed into spasms toward the anode
[involuntary reaction].

2) one fish is swimming oriented with the head towards the cathode. The fish shows firstly a
spasm and than it makes an half run toward the anode. Note that the reasons for this "half-
turn towards the anode are not yet fully understood. After the change of orientation
towards the anode, fish fall back into the dynamics of the first effect.
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3) The fish is placed perpendicular to the force lines of the current field [position across].
After anodic curve and the new orientation, fish fall back into the dynamics of the first
effect.
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3. Numerical simulations of electro-fishing systems

Generally, data simulation includes all methods that can reproduce the processes of a
system in a theoretical fashion. Numerical simulation is the kind of simulation that uses
numerical methods to quantitatively represent the evolution of a physical system. It pays
much attention to the physical content of the simulation and emphasizes the goal that, from
the numerical results of the simulation, knowledge of background processes and physical
understanding of the simulation region can be obtained. In practice, numerical simulation
uses the values that can best represent the real environment. In the specific, a numerical
simulation was used to set up an electro-fishing system to be used in the open sea
environment. Subsequently, a laboratory trial was carried out to obtain real electric field
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values in a confined environment (tank) to validate the theoretical simulation values. The
tank trials reproduced the open sea conditions at different distances from the electrodes for
a given geometry of electrodes and voltage. Electric field simulations were obtained through
a bi-dimensional campistic model of stationary conduction in a non homogenous electric
system (fish swimming in sea water). This model can calculate the current density
distribution and electric field pattern both in the fish and in water for a given electrode
geometry. The numerical model is based on a discrete formulation of the electro-magnetic
field equations in stationary conduction conditions and is a module of a software named
GAME (Geometric Approach for Maxwell Equations) (Specogna & Trevisan, 2005; Specogna
& Trevisan, 2006; Codecasa et al., 2007). It requires to discrete the dominion of interest
(made up of fish in marine water) in a couple of reticules one dual of the other.
Subsequently, the physical quantities were univocally associated to the geometric nodes of
the two complexes. In this way, the geometric aspects at a discrete level are evidenced and
the physical laws are directly translated into an algebraic shape without having to discrete
equations to the partial derivatives. Coupling then the approximated equations (Ohm’s law
in the specific case) in a discrete shape, it is possible to write scattered algebraic systems of
great dimensions that once resolved supply the solution of the field problem. Such approach
is alternative to the classic methodologies such the finite elements, finite differences or side
elements and it can be used to study this physical problem in which the mediums are non
homogeneous. The model gives output values for the following parameters: electrode
current (A), fish head-tail potential difference (V), mean electric field inside the fish (from
the mean of discrete portions constituting the fish, V/m) and in the surrounding water
(from the mean of values of discrete portions of water near the fish, V/m), values relative to
arbitrary sampling points (electric field E, V/m and current density A/m?). For the Gulf of
Trieste (Northern Adriatic Sea), monthly recorded mean values for salinity range from 32.29
to 38.12 psu and for temperature from 6.60 to 24.20°C (Stravisi, 1983). A range of 30 - 40 psu
for salinity and of 6 - 25°C for temperature has therefore been considered. On the basis of
known relationship between salinity, temperature and conductibility in sea water, at depth
0 m, the considered values of salinity and temperature correspond to the range 2.99 - 5.97
S/m of water conductibility (Stravisi, 1983). Therefore, numerical simulations have been
conducted at water conductibility of 3.0, 4.0, 5.0 and 6.0 S/m.

3.1 Numerical simulations of fish in an open sea

The transversal section of the electrodes geometry in sea water (Fig.7) is given by a circular
electrode (D =1 m) symmetric to a couple of cathodes far A=10 m from each other and with
width 2 m. The anode and cathode are supplied with V; and V; potentials, respectively.
Being the model a stationary conduction bi-dimensional system, its depth is unitary (1 m).
The electric field for the described geometry was numerically simulated. The electric field
was described in five points (d1, d2, d3, d4, d5), which are respectively 2.5, 2.7, 3.2, 4.7, 8.4 m
far from the centre of anode and cathode. The electric field intensity which is required to
achieve an electro-taxis response at a given distance from electrodes and water conductivity
were obtained from bibliographic data (threshold values of 10 V/m for electric field
(Beaumont et al., 2002); water conductibility of 3.5 S/m (Beaumont et al., 2002, Le Men,
1980); 40 pA/mm? for current density (Beaumont et al, 2002)). The required power of the
system was calculated from those values. In the specific, the power transfer theory (PTT) as
defined by Kolz (1989) and validated by Miranda & Dolan (2003) for pulsed direct current
was calculated as:
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where P, is the power applied to water and Pyis the power transferred to fish (pW/cm3); Cf
and C,, are the conductibility of fish (uS/cm) and water, respectively.
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Fig. 7. Transversal section of electrodes in open sea. Dimensions are defined by parameters
A, B, D. d1-d5 are the sampling points in which the electric field has been described.
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D
where V is the voltage at the electrodes and D the distance (cm) between electrodes. The
PTT has been defined and validated for a uniform electric field, generated by parallel plate
electrodes in a tank (Kolz, 1989; Miranda & Dolan, 2003). fish conductivity value was of 115
pS/cm (0.0115 S/m), as recommended by Miranda and Dolan (2003). Using this value to
calculate M., we obtained the smallest error of estimate. Power density was calculated using
the peak voltage (Beaumont et al., 2002; Kolz, 1989) obtaining the maximum power density.
Miranda and Dolan (2003) reported a minimum threshold value for power transferred to the
fish necessary for narcosis, obtained with PDC at 60 Hz, that corresponds to P=15 pW/cms.
So, considering this power density and assuming C~=115 uS/cm, the required P, is given by:

Pw = Pf : M(?p (8)

The required voltage is obtained from (3), using D=500 cm and with electrodes described
earlier. Simulations have been carried out without fish using four water conductivity values
(3,4,5,6 S/m). The same simulations have been repeated in presence of fish: single and in a
group (30 fish). Fish had a length of 10 cm (single fish and group) and 30 cm (single fish),
respectively. Single fish were positioned in the five sampling points (d1-d5) and in the case
of a group of fish, the barycentre of the group was centred on the sampling point.

The effect of water conductibility and fish length on the electric field variables were tested
using one way ANOVA and Tukey’s test as a post-hoc test. A group of fish of 30 individuals
was used. Levene’s test and normality of residuals were carried out to check the ANOVA
assumptions. Data analysis was carried out using the statistical package SPSS 14.0.
Equipotential surfaces areas were obtained using the software Image] and Mathlab from the
output files of the G.A.M.E fish software. Applying the PPT equations, a constant voltage
value of about 90 V was obtained. This effect can be explained because P./Cy is a constant
and is itself multiplied for a constant (D?). Using several values of water conductivity,
voltage values at the electrodes resulted almost constant (Fig. 8).

Fig. 8.
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Using 90 V voltage at the electrodes, for a water conductivity ranging between 3 and 6 S/m,
the electric field intensity values ranged between 15.14 V/m and 1.48 V/m at the 41 and 45
positions. The intensity of the field is function of distance but not of the water conductivity
(table 1). On the other hand, electric density at the electrodes increased at higher water

. Current at Water Distance from
pﬁ‘x’r Te‘:“’“ electrodes conductivity  point anode V/m A/m? M\e;‘“
A S/m m

51.75 920 574.99 3 1 2.5 15.14 45.44 37.77
2 2.7 13.28 39.83 36.55
3 3.2 9.43 28.3 33.13
4 4.7 4.44 13.32 27
5 8.4 1.48 4.43 19.41

69.00 90 766.65 4 1 2.5 15.14 60.58 37.77
2 2.7 13.28 53.1 36.55
3 3.2 9.43 37.73 33.13
4 4.7 444 17.76 27
5 8.4 1.48 591 19.41

86.25 90 958.32 5 1 2.5 15.14 75.73 37.77
2 2.7 13.28 66.38 36.55
3 3.2 9.43 47.16 33.13
4 4.7 4.44 22.2 27
5 8.4 1.48 7.39 19.41

103.50 90 1149.98 6 1 2.5 15.14 90.87 37.77
2 2.7 13.28 79.65 36.55
3 3.2 9.43 56.59 33.13
4 4.7 444 26.64 27
5 8.4 1.48 8.87 19.41

Table 1. Results of numerical simulations of fish and open sea using 90 V at the electrodes
(water conductibility between 3.0 and 6.0 S/m in points d1-d5)
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conductivities. The required power ranged from about 52 kW to 103 kW for 3 - 6 S/m
conductivity values (applying 90 V voltage). Assuming a threshold of 10 V/m, the electric
field gradient values obtained from the model are suitable to produce electro-taxis until
point 3, that is a distance of almost 3 m from the centre of the anode. Fig. 9 shows the
distribution of equipotential areas respect to the electrodes. An area of 28.9 m2 shows values
greater than 9.6 V/m.
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Fig. 9. Electric field distribution and equipotential areas obtained supplying 90 V to the
electrodes in open sea
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Water conductivity had no significant effect on fish parameters: head-tail potential
difference, mean, maximum and minimum field inside and outside the fish, for no
fish configuration (1 fish 10 cm and 1 fish 30 cm: P=1,000; F3,19=0,000; N=20; 30 fish 10
cm: P=1,00; F3599=0,0; N=600). The head-tail potential difference and the field outside
the fish decreased with distance (Fig. 10 and 11). This is due to the fact that the electric
field is not uniform and its effects are reduced closer to the cathode. Table 2 shows
the results of the simulations in open sea in presence of fish. While the mean current
field external to the fish is similar using different fish configurations, the internal mean
field is greater considering fish groups, with values that are more than double respect
to single fish. The mean field inside the fish is greater than the field in the water
surrounding the fish (table 2). Fish dimensions do not have a significant effect on
the mean field inside the fish (F259=0.24, P=0.787; N=60). Correlation between mean
external and internal field in the fish is positive and significant (R=0,81; P=0.000;
N=640). The relationship between the mean field inside fish and in the water is not linear
(Fig. 12).
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Fig. 11. Mean electric field in the water surrounding the fish

Mean field inside the fish decreased with distance; in the case of single fish (10 and 30 cm)
maximum values were obtained 3 m far from the anode (Fig. 12).



Numerical Simulations of Seawater Electro-Fishing Systems 357

[&1]

=
o 4 oy - - o - - 1p10cm L
] —w — 1 p230om
2 = "k\ ——a— media 20p10cmi| |
=
=
= . ~
-
i
== *

Dhstance from anode /m

Fig. 12. Mean electric field inside the fish

!
A

h
g
b

1+ —=—1p1dcm

—&— 1p30cm /"'-j
20 —a— 30p1 0cm I/_,_,_,-’
20

——————

side fiz

il
10 E::sgz:u

a 2 4 G = 10 12 14 18

Averazs voltazs (1
2

Electric current applisd to the water

Fig. 13. Mean electric field inside the fish (without fish; water conductivity of 55/m)

The mean electric field of the water (closed to the fish) increased compared to the same
conditions but without fish.



358 Numerical Simulations of Physical and Engineering Processes

dim dist cond Current at Eman  Emax  Emin Emax Emin ~ Emean
Total . . from power ddp . .
n. fish fish point anode water  electrodes KW v int int int ext ext ext
(cm) (m) (S/m) (A) Vim V/m V/m V/m V/m V/m

1 10 di1 25 574.98 51.7 178 1825 1966 1143 1963 13.62 17.39

1149.97 1035 1.78 1826 19.68 1141 19.65 13.61 17.39

d2 2.7 574.98 51.7 154 2043 2447 1400 2165 3.69 1491
114996 1035 154 2050 2460 1410 2172 359 1492
d3 32 574.97 51.7 1.06 2023 2822 1705 1916 131 1036
114994 1035 1.06 2035 2851 1713 1925 130 10.36
d4 47 575.00 51.8 042 1417 1845 1180 1209 0.34 4.75
1150.01 1035 043 1427 1862 1183 1218 0.34 4.76
d5 8.4 574.99 51.7 0.09 6.63 8.85 5.79 517 0.17 1.67

1149.97 1035 0.09 6.68 8.93 5.83 522 0.15 1.68

574.84 51.7 548 1848 2015 16.03 20.09 1496 17.76
114968 1035 549 1849 2016 16.03 2010 1496 17.76

d2 2.7 574.86 51.7 467 2151 2360 1924 2280 4.07 1515
1149.73 1035 4.68 2159 2372 1931 2289 398 1516
d3 32 574.90 51.7 318 2152 2442 1968 2176 132 1039
114980 1035 318 21.65 2459 1978 2183 125 1039
d4 47 574.97 51.7 125 1481 1696 1321 1370 034 485
114994 1035 125 1492 1710 1330 1379 030  4.86
d5 8.4 574.95 51.7 026 6.72 7.93 5.92 5.51 0.16 1.67

114990 1035 026 6.77 8.00 5.96 5.55 0.15 1.68

30 10 di1 25 573.57 51.6 131 5192 7730 4013 4266 278 17.52

114713 1032 131 5228 78.04 4036 4299 269 1757

d2 2.7 573.97 51.7 118 4504 63.02 3509 3765 195 1520
114792 1033 118 4536 6360 3530 3793 188 1525
d3 32 574.49 51.7 0.82 3098 4692 2372 2585 1.62 10.80
114897 1034 0.83 3119 4737 2385 2604 156 10.83
d4 47 574.88 51.7 037 1435 2080 1090 1201 0.89 5.05
1149.77 1035 037 1445 2099 1096 1210 0.86 5.06
d5 8.4 574.97 51.7 012 538 7.87 4.19 4.40 0.23 1.75

3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6
3
6

1149.93 1035 012 542 7.94 421 4.44 0.22 1.75

Table 2. Numerical simulations in open sea (water conductivity 3-6 S/m) in presence of fish.
For fish in group mean values are shown (N=30). The impressed voltage is 90 V.
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3.2 Numerical simulations of fish in a tank

Numerical simulations in a controlled environment have been carried out considering an
experimental tank of 2.5 m x 0.7 m; h max 0.6 m. Plate electrodes are positioned on the short
sides of the tank and are supplied with a V; and V; potential, respectively. The dimensions
of the electrodes, which are identical and parallel, are 0.6 m x 0.6 m. This configuration
permits to obtain a uniform electric field (Holliman and Reynolds, 2002). The same fish
configurations used before were also used in the tank simulations (single fish of 10 cm and
30 cm and group of 30 fish of 10 cm). The orientation of fish in the group is the same as in
open sea simulation. Single fish are centred in the tank, parallel to the electric field; for the
group, the barycentre corresponds to the centre of the tank (Fig. 14).
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Fig. 14. Lay out of the group of 30 fish in the tank. The two electrodes, supplied with V; and
V> potentials , are parallel and placed at the short sides of the tank.

Tank simulations have been carried out with the same values of V/m obtained from open
sea simulations in the five sampling points d;-ds. Only values greater than 5 V/m have been
considered, which correspond to about half the minimum field intensity required to achieve
electro-taxis in sea fish (Le Men, 1980). Water conductibility values were the same as in the
open sea simulations: 3.0, 4.0, 5.0, and 6.0 S/m. In the tank simulations, the voltage used at
the electrodes was similar to the values obtained in the open sea simulations in the points
d1-d3. Similarly to the open sea simulations, the work carried out for tanks, showed that the
mean current field inside the fish was greater than the field in the water surrounding the
fish. Furthermore, fish in groups showed values inside the body grater and more than
double respect to single fish. Results of simulations of electric fields for fish reared in a tank
are presented in Table 3. In these simulations, a specific voltage was applied at the
electrodes to produce voltage gradients which were identical to those obtained in
simulations of open sea conditions without fish. As for the open sea, the mean current
density inside fish was greater compared to the water close to the fish and for groups of
fish compared to single fish. Using a voltage similar to the values obtained in open sea in the
points d1-d3, the mean electric field inside the fish resulted different between tank and open
sea simulations (table 4). In the tank, the electric field inside the fish increased linearly. By
contrast, in open sea, the electric field is not uniform and it varies in the three considered
sampling points (d1-d3). This determines a non linear pattern of the mean field inside the
fish compared to the field in the water without fish. The difference between tank and
open sea values is higher for the mean field inside the fish but negligible for the field in
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the water surrounding the fish. Table 5 shows the difference between tank and sea. For
single fish, the difference between tank and sea increases for higher field intensities and for
fish groups. In each case, electric field mean module inside the fish was always lower in the
tank than in open sea. The required power, expressed as the applied voltage at the
electrodes is listed in table 5. These values represent the maximum instantaneous required
power. Using PDC the effective required power, in the time unit, depends on the
impulselength and frequency. Therefore, using for example a PDC with 60 Hz frequency
and 6 msec impulses (duty cycle 36%), the mean required power/sec corresponds to the
36% of the maximum instantaneous power. In practice, in this case, the required power is
reduced from 103 kW to less than 40 kW (table 5).

E  Applied o length conduc & ent ddp E meanint Emaxint Eminint Emax_ext Emin_ext Emean_ext
water voltage nfish m water A v V/m V/m V/m V/m V/m V/m
V/m A" ) S/m

151 36.24 1 0.10 3 1910 1.76 1805 1981 11.27 1972 1219 17.11
6 3820 176 18.06 19.83 1125 1973 1217 1711

0.29 3 18.89 534 1825 1970 1582 19.69 1299 17.40
6 3779 534 1826 1972 1582 1970 1299 1741

30 0.10 3 1759 118 4429 6219 3186 3824 2.40 15.62

6 3515 118 4456 6272 3202 38.50 2.32 15.66

133 31.92 1 0.10 3 16.82 155 1590 1745 9.93 1737 1073  15.07
6 3365 155 1590 1746 9.91 1738 1072 15.07

0.29 3 16.64 470 16.07 1735 1394 1734 1144 15.33

6 33.28 470 16.08 1736 1394 1735 1144 1533

30 010 3 1549 1.04 39.01 5478 28.06 33.68 212 13.76

6 3096 1.04 3925 5524 2820 3391 2.04 13.79

94 2256 1 0.10 3 11.89 1.09 1124 1233 7.02 12.28 7.59 10.65
6 2378 1.09 1124 1234 7.01 12.28 7.58 10.65

0.29 3 11.76 332 1136 1227  9.85 12.26 8.08 10.83

6 2353 333 1136 1227 9.85 12.26 8.08 10.84

30 0.10 3 1095 0.74 2757 3871 19.84 23.80 1.50 9.72

6 21.88 0.74 2774 39.04 1993 2397 1.44 9.75

Table 3. Numerical simulations of a tank using different fish configurations. E water (first
column) is the current field obtained in points d1-d3 in the open sea simulation without fish



Numerical Simulations of Seawater Electro-Fishing Systems 361

ddp Emedint  Emed est 0{0 A % A
V/m V/m int est
Field in 151V /m
water
point d1 1fish 10cm tank 1,76 18,06 1711 0.20 0.28
sea 1,78 18,26 17.39
1fish 30cm tank 5,34 18,26 17.41 0.23 0.35
sea 5,48 18,49 17.76
30fish 10cm tank 1,18 44,51 15.65 7.70 191
sea 1,31 52,21 17.56
Field in 13,3V/m
water
point d2 1fish 10cm tank 1,55 15,90 15.07 4.59 -0.15
sea 1,54 20,49 14.92
1fish 30cm tank 4,70 16,08 15.33 5.49 -0.17
sea 4,67 21,57 15.16
30fish 10cm tank 1,04 39,20 13.78 6.09 1.46
sea 1,18 45,29 15.24
Field in 9,4V /m
water
point d3 1fish 10cm tank 1,09 11,24 10.65 9.08 -0.29
sea 1,06 20,32 10.36
1fish 30cm tank 3,33 11,36 10.84 10.27 -0.45
sea 3,18 21,63 10.39
30fish 10cm tank 0,74 27,71 9.74 3.44 1.08
sea 0,83 31,15 10.82

Table 4. Summary comparison values obtained from open sea and tank simulation, for the
same field intensity. Only values for water conductivity of 5S/m are shown. In the last
columns, the difference between sea and tank field (internal and external to the fish) values,
in percentage on sea values, are reported

Water conductivity Peak power Mean power at

0,
S/m KW 36% dll:‘fvy cycle
3 51.7 18.6
4 69.0 24.8
5 86.2 31.0
6 103.5 37.3

Table 5. Maximum (peak) and mean power required in an open sea electro-fishing system at
different water conductivity values (voltage of 90 V and 36% duty cycle)

4. Field testing of electro-fishing systems

The effectiveness of the electro-fishing is affected by several factors as type of current,
voltage applied, electrode shape, water conductivity and temperature, distance of
fish, size and fish species. The number of pulses per second (pulse frequency) and the
time (pulse width) have different effects on different species of fish. In a PDC field,
fish body flexes with each pulse, and returns to normal situation. Flexing and
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straightening movements of fish towards the anode, called electro-taxis. Modern
equipments allow complete control over the electrofisher output. These methods of
synthesizing waveforms makes it possible to produce virtually any waveform, so it can be
selected one that is safest for the fish. It allows to create narrow pulses to achieve the same
results as wide ones. An electric field in water can be considered to have three separate
areas. The outer peripheral area is a weak field to which the fish is indifferent to. The next
area, closer to the electrodes, has a stronger electrical field, but not enough to stun the
fish. In this area, the involuntary swimming action will occur and the fish will swim
towards the anode. The innermost area has the strongest electrical field, and fish within that
area are immobilized. When electro-fishing starts, fish are usually hiding up to three meters
away, so high power is required to attract them out of hiding. Fish close to the anode receive
a very high head-to-tail voltage. Most fish injuries occur within half a meter from the anode.
This is called the zone of potential fish injury. We can minimize the injury by reducing the
time the electricity is turned on. The duty-cycle is the percent of on-time. It is a product of
the pulse width and the pulse frequency. The duty-cycle can be lowered in three ways: by
reducing the pulse width, by reducing the pulse frequency, or by using gated bursts,
where the power is off for a period between each burst of pulses. Fish close to an anode
with a low duty-cycle are far less likely to be injured than with a high duty-cycle. The way
in which voltage and current distribute around electrofisher electrodes is complex. Note
that the current density and voltage gradient are highest near the electrodes. The
dimensions of the electrodes are very important in determining the voltage distribution
around electro-fisher electrodes. The cathode dimension is considered to be infinite. Field
testing has confirmed that the mean electric field simulated inside the fish is greater than
the nominal field in the water, with a significant effect of orientation of the fish towards
the electric field. To collect fish by electrical means we must create an electrified zone of
sufficient amplitude to stun fish. The responses of fish to electric fields in water are
dependent on the field’s intensity. Field intensity can be described by any of three
interrelated quantities: voltage gradient, current density or power density. Field intensity
is greatest next to the electrodes and decreases to barely perceptible levels as distance
from the electrodes increases, even in the area directly between anode and cathode when
they are sufficiently separated. Electrofishing fields are nearly always heterogeneous,
with field intensity highest at the electrode surface and decreasing geometrically from
that surface to barely perceptible levels a few meters away. The outer boundary for each
response zone represents the minimum in-water field intensity or threshold for that
response. The specific values for these thresholds vary with water conductivity and
temperature, electric-field waveform and frequency, and the pertinent electrical and
physiological characteristics of the fish, which, considered as a whole, define its effective
conductivity. Electrofishing tends to be size selective, larger fish being more vulnerable to
capture, has long been established (Reynolds 1996). Larger fish are also more likely to be
injured by electrofishing than smaller ones of the same species. Sharber et al. (1994)
demonstrated a curvilinear relationship between pulse frequency and injury rate;
frequencies of 60 Hz and higher were more damaging than lower frequencies. This
relationship has been confirmed repeatedly (McMichael 1993, Dalbey et al. 1996, Ainslie et
al. 1998). The likelihood of tetany (forced muscle contraction) also increases with pulse
frequency, lending credence to the idea that tetany tends to induce injury. Pulse frequency
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can often be manipulated on manufactured equipment, In general, operators should
reduce pulse frequency to the range of 15-30 Hz, while trying to maintain acceptable catch
rate, if injury rate has to be significantly reduced. Pulse duration is related to duty cycle.
At a given peak voltage or amplitude, changing pulse duration will change the average
voltage (area under the waveform curve), meaning that the fish is subjected to more
electrical energy. It is possible that longer pulse duration (e.g., 6-8 ms) contributes more to
added stress than injury, compared to shorter pulse duration (e.g., 2-4 ms). Experimental
results of sea bass after exposure to electro-fishing in laboratory tanks are presented in
Figure 15 and 16. These figures illustrate differences in sea bass fish (two sizes: 10 and 30
cm) in terms of electro-taxis and tetanus threshold values after electrical exposure.
Tetanus threshold values decreased significantly (P<0.05) for higher frequencies in both
sizes while electro-taxis was not influenced by the electrical exposure. It is worth noting
that, these values decreased with the fish size. All fish were immobilized during the
electrical exposure. However, after 5 minutes, they recovered the opercular movements
and swimming ability.

Results of electro-fishing exposure (frequency: 25-75-125 Hz; duty cycle: 5-20-40%) on
carcass quality characteristics are reported in Table 6, Fig.15 -16. No effects on carcass
quality characteristics were identified for any of the fish exposed to the experimental
treatments. Fish were inspected for hemorrhages in the skin, external damage, internal
haemorrhaging, blood spotting and damage of the spines. No differences were found after
electro-fishing on other carcass quality characteristics (QIM, colour, shear force, rigor
mortis).

Treatments

25-5  25-20 25-40 75-5 75-20 75-40 125-5 125-20 125-40 dlisle8

pH 6.4 6.1 6.4 6.1 6.4 6.2 6.1 6.2 6.3 0.19
Colour:

L* 34.8 36.4 355 36.5 36.1 36.1 35.5 35.8 36.0 2.65

a* -1.9 -1.6 -1.7 2.7 -1.5 -1.5 -1.5 -2.5 -1.8 0.16

b* 6.0 7.6 6.3 5.4 5.1 5.1 6.4 6.1 6.5 1.74

Croma 6.3 7.8 7.3 6.7 53 53 6.6 6 6.7 1.63

Hueangle 1073 1022 109.6 1074 106.9 1069 1051 109.8 106.2 1598

Cooking 976 9800 9796  98.62 99.02 9893 9766 9778 9810 096
yield (%)
Maximum 85 8.7 92 83 75 85 89 90 434
force (N)
Total

amountof 0125 0.095 0122 0.104 0.090 0.088 0.103 0.100 0.101 0.0001
work (J)

Table 6. Results of electro-fishing exposure on carcass quality characteristics of sea bass
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Fig. 15. 16. Electric-induced electro-taxis and tetanus of sea bass after electro-fishing

exposure (frequency:25-75-125 Hz; duty cycle: 20)
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5. Conclusions

The main problem in sea water electro-fishing is the high electric current demand in the
equipment, brought about by the very high ionic concentration of salt water. The solution of
this problem is to reduce the current demand as much as possible by using pulsed direct
current, the pulses being as small as possible. For example, if pulse duration is reduced to 1
or 2 milliseconds, and pulse frequency is kept below 30 hertz (pulses per second), this will
allow the operator to increase the amplitude, or height, of the pulses with the voltage
control. Fish generally respond best when the peak voltage is higher and the average
voltage (area under each pulse curve) is lower. If the fish don't respond, then average
voltage is increased (i.e., pulse frequency and/or pulse duration) is increased until they do
respond. It is usually better to increase frequency first, followed by duration. Ultimately, if
none of this may work, the power source (generator) is may be inadequate. In this case, one
can experiment with smaller electrodes (reduced surface area) to further reduce the demand
for current. The numerical simulations of a non homogeneous electric field (fish and water)
permit to estimate the current gradient in the open sea and to evaluate the attraction
capacity of fish using an electro-fishing device. An area of about 30 m? suitable for electro-
taxis is estimated for a voltage of 90 V on a circular anode and two linear cathodes which are
5 m far from the centre of the anode. Tank simulations are, instead, carried out in a uniform
electric field, generated by two parallel linear electrodes. The convenience of using an
uniform field is given by the need of finding threshold values of current field which are
independent from the position of the fish in the tank. Numerical simulations allow to
compare the electric field in the water and inside fish. The current field inside fish is
resulted smaller in a tank compared to the open sea. This means that, in practice, in the open
sea situation, the efficacy of an electro-fishing system is stronger, in terms of attraction area.
Numerical simulations carried out using a group of 30 fish, both in open sea and in the tank,
showed the presence of a “group effect”, increasing the electric field intensity in the water
around each fish. In this situation, each single fish has a greater current field compared to a
fish group.
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1. Introduction

In general, rotating machinery elements are frequently met in mechanical/mechatronical
engineering, and in many cases their non-linear dynamics causes many harmful effects, i.e.
noise and vibrations. In particular, nonlinear rotordynamics plays a crucial role in
understanding various nonlinear phenomena and in spite of its long research history (see
for instance (Tondl, 1965; Someya, 1998; Rao, 1991; Gasch et al., 2002; Muszynska, 2005) and
the references therein) it still attracts attention of many researchers and engineers. Since the
topics related to nonlinear rotordynamics are broadband and cover many interesting aspects
related to both theory and practice, in this chapter we are aimed only on analysis of some
problems related to rotor suspended in a magneto-hydrodynamics field in the case of soft
and rigid magnetic materials.

The magnetic, magneto-hydrodynamic and also piezoelectric bearings are used in many
mechanical engineering applications in order to support a high-speed rotor, provide
vibration control, to keep lower rotating friction losses and to potentially avoid flutter
instability. There are a lot of publications devoted to the dynamics analysis and control of a
rotor supported on various bearings systems. The conditions for active close/open-loop
control of a rigid rotor supported on hydrodynamic bearings and subjected to harmonic
kinematical excitation are presented in (Kurnik, 1995; Dziedzic & Kurnik, 2002). The
methodology for modeling lubricated revolute joints in constrained rigid multibody systems
is described in (Flores et al., 2009). The hydrodynamic forces, used in the dynamic analysis
of journal-bearings, which include both squeeze and wedge effects, are evaluated from the
system state variables and included into the equations of motion of the multibody system.
To analyze the dynamic behavior of rub-impact rotor supported by turbulent journal
bearings and lubricated with couple stress fluid under quadratic damping the authors of
(Chang-Jian & Chen, 2009) have used the system state trajectory, Poincaré maps, power
spectrum, bifurcation diagrams and Lyapunov exponents. It was detected the dynamic
motion as periodic, quasi-periodic and chaotic types.

In (Zhang & Zhan, 2005; Li et al., 2006) a rotor-active magnetic bearings (rotor-AMB) systems
with time-varying stiffness are considered. Using the method of multiple scales a governing
nonlinear equation of motion for the rotor-AMB system with 1-dof is transformed to the
averaged equation and then the bifurcation theory and the method of detection function are
used to analyze the bifurcations of multiple limit cycles of the averaged equation.
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y

Fig. 1. The cross-section diagram of a rotor symmetrically supported on the magneto-
hydrodynamic bearing

In the present chapter 2-dof nonlinear dynamics of the rotor supported on the magneto-
hydrodynamic bearing (MHDB) system is analyzed in the cases of soft and rigid magnetic
materials. In the case of soft magnetic materials the analytical solutions have been obtained
by means of the method of multiple scales (Nayfeh & Mook, 2004). Rigid magnetic materials
possess hysteretic properties which are realized in the frames of the present work by means
of Bouc-Wen hysteretic model. This model allows simulating hysteretic loops of various
forms for systems from very different fields (Awrejcewicz & Dzyubak, 2007). Chaotic
regions and the amplitude level contours of the rotor vibrations have been obtained in
various control parameter planes.

2. Mathematical model of the rotor suspended in the magneto-hydrodynamic
field

Consider a uniform symmetric rigid rotor (Fig.1) which is supported by a magneto-
hydrodynamic bearing system. The four-pole legs are symmetrically placed in the stator. Fi
is the electromagnetic force produced by the kth opposed pair of electromagnet coils. This
force is controlled by electric currents

1, =1y £ Ay,
can be expressed in the form

2.
k = —72/10AN *102 Alk 7
(25+l/y )



Numerical Analysis of a Rotor Dynamics in the Magneto-Hydrodynamic Field 369

where iy denotes bias current in the actuators electric circuits, w4 is the magnetic
permeability of vacuum, A is the core cross-section area, N is the number of windings of the
electromagnet, ¢ is the air gap in the central position of the rotor with reference to the
bearing sleeve, | is the total length of the magnetic path, the constant value x" =B, /(1oHy)
denotes the magnetic permeability of the core material; the values of the magnetic induction
Bs and magnetizing force H; define the magnetic saturation level. & is the angle between
axis x and the kth magnetic actuator. Qp is the vertical rotor load identified with its weight,
(P, ,P)) are the radial and tangential components of the dynamic oil-film action, respectively.
Equations of motion of the rotor are represented in the following form (Kurnik, 1995;
Dziedzic & Kurnik, 2002; Osinski, 1998)

r*(p,p*,gb*)COS¢7— PT*(p,gb*)sin(/H iFk* cos O, + Qx*(t),
k=1

K
my =B (p,p",¢ )sing+ P (p,¢ cosp+ Y F sing +Qy +Q, (¢),
k=1

*

. pz(“’ ‘2“’) pb arctg lpl

p(p)a(p) \/p 1-p

P (p,p"¢")=—2C

o0 =297

F et ) o

Here m" denotes the rigid rotor mass, (x*, y) are the Cartesian coordinates of the rotor center;
Q;(t) , Qy*(t) are the external excitation characterizing bearing housing movements. We
are considering vibrations of the rotor excited by harmonic movements of the bearing
foundation in the vertical direction

Q. (=0, Q, (t)=Q sinQ’t",

where Q" and (2 are the amplitude and frequency of the external excitation, respectively.
Constant C" is defined as

« 6uR.L,

C = —57

Parameters 1, &, R., L. denote oil viscosity, relative bearing clearance, journal radius and
total bearing length, respectively. (o, ¢) are the polar coordinates, p(p)=1- o,
q(p) =2+ p* are the functions conditional p.

To represent the equations of motion in a dimensionless form the following changes of
variables and parameters are introduced:

3 LE * Lk * * L*

t:a)t,gozgo 7
2] w c wc w“c c wc
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* * * *
o C Q Q Q
y= *Z*IC: ***/Q: */Q: **2*/Q0: * ) xS
w C m wc [ maw c maw c
* * *
Fk P = P” Pr
Fk:ﬁ r T x *2*/P¢:W/
mao ¢ mao ¢ mao “c

where ' is the rotation speed of the rotor; ¢ is the bearing clearance.
Thus the dimensionless equations of motion take the form

¥=P.(p,p,p)cosp—P,.(p,¢)sinp+F,,
jj:P,(p,p,gp)sm(p+P( )cosgp+F +Qp +QsinOt,

p-(1 2(/7)+ P,b arc tp p) = M
o) zc{p(p) \/P tgﬁ}' o o)

Here

. yx—x ¢+ 1
X=pcosQ, y= psmgo,(ﬂfyp / p:w,p:11x2+y2,
P

X . Y
COSQY = 77—, SINY = ————,
\/x2+y2 x2+y2

the magnetic control forces are expressed as follows

Fx :—7X—A(X—XO)’ Fy :—}/y—i(y—yo),

where (xy,1,) are the coordinates of the rotor static equilibrium, y and 2 are the control
parameters.

3. Soft magnetic materials

In this section, we consider 2-dof dynamics of the rotor in the MHDB system without taking
hysteresis into account.

3.1 The non-resonant case

The right-hand sides of Eqs (1) were expanded in Taylor’s series and the origin was shifted
to the location of the static equilibrium (x,,1,) for the convenience of the investigation. The
linear and quadratic terms were kept. So, the reformed equations of motion are as follows:

X+ ax — P =-2[4% + oy x% + ayy? + opxk + auXy + asxy + agky + oYy,
i+ ay + i =-2[u1 + Bix* + By + Pyxt + yxy + Psxy + ey + Bryy + Fos(Qt + 7).

We seek the first-order solution for small but finite amplitudes in the form
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x=ex,(Ty, Ty)+ %%, (Ty, Ty) +...,
y=ey,(Ty, T)) + &y, (Ty, Ty) +...,

where ¢ is the small, dimensionless parameter related to the amplitudes and T, =&"t
(n=0,1) are the independent variables. It follows that the derivatives with respect to ¢
become expansions in terms of the partial derivatives with respect to T, according to

®)

d_0 0, 00h, 00, p o,
dt 0T, ot oT, ot T, ot

42 2 0
F:(D0 +&Dy +&°D, +...) =Dj +26DyD, +* (D} +2DyD; ) +..., where D, oL
To analyze the non-resonant case the forcing term is ordered so that it appears at order &.
Thus, we recall in (2) F=¢f, [, = gu, . Substituting (3) into (2) and equating coefficients of
similar powers of £ we obtain

Order ¢
Dgx1 +ax, — Dy, =0, @)
Dy, +ay, + BDyx; = feos(QTy +7).
Order &
Dgxz +ax, = Dy, = 2D (Dyx; + g%, ) + D1y + alx% + az]hz +
azx1Doxy + ayx1yy + asx1 Doy + gy, Doxy + 271 Doy, )

Déyz +ay, + BDyx, =-2D, (D1y1 + Y ) = BDyx; + ﬂ1x12 + ﬁzy% +
Bsx1Doxy + Byx1y + Bsx1 Doy + BeyaDoxy + Bry1Doys-
The solution of (4) is expressed in the form
x; = Ay (Ty)exp(ioTy) + Ay (Ty ) exp (i, Ty ) + @, exp[i(QT0 + r)] +CC,
y1 = A A (T )exp (i Ty ) + Ay Ay (Ty )exp(imy Ty ) + @, exp[ i(QT, +7) |+ CC,

where CC denotes the complex conjugate of the preceding terms, A; and A; are the arbitrary
functions of Ty at this level of approximation,

I PR S < SN W | o

on, are assumed to be distinct and @2 are the roots of the characteristic equation

-4 1 0 0
det| ¢ F 0 P a i (2ar PP =0t (204 )R vaP =0, ()
0 0 -2 1

0 -B -a -4
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Mp=tiwy, Ay =*io,, A, = i%\/—ﬁla—Zﬂz +28\ 2 +4a ,

M4 = i%\/—éla 282 2B +4a .

Substitution of (6) into (5) gives

Djx, +ax, — Doy, =[ ~2iey (Af + mAy)+ fA A} |exp (i Ty ) +
[2iw, (Ay + i Ay) + BALAY |exp(im,Ty ) +...+CC,
Diy, +ay, + fDoxs = I:_Zia)lAl (AL +1mpA) - ﬂA’Jexp(iwlTO )+
[2imy Ay (Ay + 11 Ay) - BAS |exp (i, Ty ) +...+CC.

The terms, which do not influence solvability conditions, are not presented in the last
equations and replaced by dots.

To determine the solvability conditions of (8), following to the method of undetermined
coefficients we seek a particular solution in the form

x, = Pyexp(iogTy) + Py exp (i, Ty ) -

Yo = Py exp(io Ty ) + Py exp(ianTy) ©)

with unknowns P11, P1p, P21 and P2,. Substitution of expressions (9) into (8) and collection of
coefficients at exp(io;T,) and exp(ia,T;) yields

2 .
(a -y, )Pln - lﬂwnPZH = Rln 4

iﬂwnpln + (Ol - w}% ) P2n = RZn (n=1'2)/ (10)
where
Ryp =-2ie, (All +mhy ) +BMAY, Ry =-2iw, (A'z + ,UlAz) + A A,
Ry =—2ianAq (Ai + Ay ) —PAL, Ry =-2im,A, (A'z + ﬂzAz) - pA;.

Taking into account the characteristic equation (7), the determinant A of the set of linear
algebraic equations relative to Pin, P2, (10) is equal to zero

a-w: —ifo,

A= =(a—a)3)2—[)’2a)3=0~

ifo, a-a?

According to Kronecker-Kapelly’s theorem, the set of linear algebraic equations is
compatible if and only if the matrix rank of the linear set is equal to the extended matrix
rank. Therefore, the solvability conditions are

Rln _Zﬁ @y

R,, (a - wg) =0 (n=1.2),
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otherwise the set of linear algebraic equations (10) has no solutions.
So,

Ry, = =2t (n=1,2). (11)

The differential equations to define Ai(T:) and Ax(T1) are the consequence of solvability
conditions (11)

[ PA, - 2iw, + 2“"11/,\\1 B ]Ag + (21“’;31"‘2 —2iw, le A, =0,
1 1 (12)

i 2im, A .
[ﬂ/\z = 2iw, + 21@21%\2 : ﬁ]Alz +[ za)% 262 _ 21502#1]142 =0.
2 2

It follows from (3), (6) and (12) that the complex solution of the differential set (2) is

x= g[exp(—gvlt‘)a1 exp(iwyt) +exp(—ev,t)a, exp(iwyt) + ®, exp[i(Qt + r)] + CCJ + 0(52),
y=&[ Ayexp(—evt)ay exp(iogt) + Ay exp(—ev,t)a, exp(imyt) + Dy exp|i(Qt +17) |+ CC] + O(az).
Then the real solution is as follows
x = [ exp(—evyt)ay cos(ayt + O, ) + exp(—ev,t) a, cos(w,t + @, ) + 2Im @y sin (Qt +7) |+ 0(52),
y= SI:II’II Ay exp(—évyt)agsin(w,t+©; )+ Im A, exp(—ev,t) x (13)

a,sin(w,t +©, ) + 20, cos(Qt +7)] +O(52),

20, (1 + 1)

where v, = , anand @, are the real constants.

4o, —ﬁ(ImAn * A }
Figure 2 shows a comparison of the numerical integration of (2) and the perturbation
solutions (13). The following parameters of set (2) were accepted for all cases (a), (b), (c)
a=1500, p=70, o0=9.985x102, =2x103, 3=7.9588x103, o= 0.002, as5=-4.0794x103,
6=4.0002x103, 0;=8.0005x103, £=29.9975, b= -0.001, = -4.1594x108, fy= -1.9997x103, 5= -
7.9188x103, £5=0.7959, = -0.4083; initial conditions are the following x(0)=10-12, y(0)=10-19,
%(0)=y(0)=0.

In the case of non-resonant undamped vibrations of the rotor (Fig. 2 (a)) it is accepted for
numerical integration that ; =0, f, =0, F=0. According to (13), the perturbation solution is
presented by the expressions

x=8.2686044 106 cos (17.2015t)+1.6313956 -10-¢ cos (87.2015¢),
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y=8.2686044 10-¢ sin (17.2015¢)-1.6313956 10-¢ sin (87.2015¢).

Fig. 2 (b) corresponds to the non-resonant damped vibrations of the rotor. For this case
i =0.1, @1, =0.15, F=0. The perturbation solution has the form

x=8.2686044 10-6 exp (~0.0412¢) cos (17.2015¢)+1.6313956 10-6 exp (~0.2088¢) cos (87.20154),

y=8.2686044 10-6 exp (~0.0412¢) sin (17.2015¢)-1.6313956 10-6 exp (~0.2088¢) sin (87.2015¢).

For the non-resonant forced damped vibrations of the rotor (Fig. 2 (c)) it is accepted for

numerical integration that /; =0.1, i, =0.15, F=0.005, =10, = -n/2. The perturbation
solution is

x=5.824110-6 exp (~0.0412¢) cos (17.2015¢)+1.69495 10-6 exp(-0.2088¢) cos (87.2015¢) -
2.38095 10-6 sin(10t-r/2),

y=5.8241 106 exp (~0.0412f) sin (17.2015¢)-1.69495 10-6 exp (~0.2088¢) sin (87.2015¢) +
47619 10-6 cos (10t-r/2).

Fig. 2 demonstrates good agreement of the numerical and analytical solutions.

numerical integration

_ analvtical solution numerical integration
10x10° Y - analytical solution
.0x1074 N 5 |
0 v ) A i 1.0x10
A /N
]| [ # |
sox10° ||| I 5.0x10° | | RN
| [0 |
I [ |
AN |
=~ 00 Vool |
. ~
[ b \ | [
soxosd VD] "
B | W " Ll iy -5.0x10
W Wi W 1 |
vy \ \ 1
-1.0x10°+ -1.0x10°+
05 10 15 20 5 4 6 8 10
t t
(@) (b)
1.5x10° numerical integration
- analytical solution
1.0x10°
0x10 l
|
5.0x10°4| |
|
= 004l
-5.0x10°4 | i |}
-1.0x10°4
-1.5x10° :
0 2 4 6 8 10
t
©

Fig. 2. Comparison of numerical integration (2) and perturbation solutions (13) in the case of
(a) nonresonant undamped vibrations of the rotor, (b) nonresonant damped vibrations of
the rotor; (c) nonresonant forced damped vibrations of the rotor
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3.2 Primary resonance: The cases of no internal resonance and an internal resonance
To analyze primary resonances the forcing term is ordered so that it appears at order & or in
the same perturbation equation as the non-linear terms and damping. Thus, we recall in (2)
F= &f f, =¢u,. Consider the case in which Q~ w,. The case Q~ @, is analogous. Let us
introduce detuning parameter o1 and put Q = w, + g0 .

Substituting (3) into (2) and equating coefficients of similar powers of € we obtain

Order ¢

Dgx1 +ax, — Dy, =0,
Déy1 +ay, + pDyx, =0.

Order &

Diyx, +ax, — fDgy, = 2D, (Dyxy + pyxy ) + BDyyy + @)X+t +
a3, Doxy + ayxqyy + asx Doy + agy1Doxy + a7y1 Doy,

Djy, +ay, + fDyx, =—2D, (Dyyy + #2y1 ) = BDyxq + Bixi + Boyi +
Bsx1Doxy + Byxyys + Psx1 Doy + Bey1Doxy + BryrDoyy + f cos(QT, +7).

The solution of (14) is given in the form

x; = A (Ty)exp(ionTy ) + Ay (Ty Jexp (i, T, ) + CC, 18)
vy = A A (T))exp(ion Ty ) + AyA, (Ty Jexp(iw, Ty ) + CC,
@, -,
wﬂﬁ ’
Substitution of (16) into (15) yields

where A, =

Djx,y +ax, — gy, =[ —2iey (Ay + i Ay)+ fAA] |exp (i Ty) +
[ 2im, (Ay + i Ay) + BALAY Jexp(im, Ty ) +
A7 [al + Aoy +imyas + Aay +io A as +io A ag + ia)lA%a7}exp(2ia)1T0)+ (17

A3 [al + Ay +imyas + My, +ioyAyas +io, Ao + ia)zA%aJexp(Zia)zTo) +

A Ay [ 20, + 200 Mgty + (i) +iw, ) oz +(Aq + Ay )y +(imyAy —ioq Ay ) s +

(iwyAq + iy Ay ) + (i) +iwy ) A1 Aqary ]exp(i(a)1 + a)Z)TO)-s-

AA, [20{1 +2M Ay, + (i, — i) ) ag +(A2 + Kl)a4 + (ia)z/\z - ia)lf\l)o% +

(ia)z/i\1 —1'0)1/\2)056 +(iwy —iw; ) A Ayt ]exp(i(a)2 —aﬁ)TO)+

AA, (a1 +Aq (Klaz +ay +io (a5 —a ))) +AyA, (0‘1 +A, (Kzaz +ay +io,) (a5 —ag ))) +CC,
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Djy, +ay, + BDgx, =[ -2im Ay (A] + Ay ) - BA] Jexp(ionT, ) +

[2imyAy (Ay + 1y Ar) - BA, Jexp(imTy ) +

A B+ N3y + i By + My By +ion A s iohy By + i AT B, Jexp(2ionT, ) +
A3[ B+ N3Py iy By + Moy + iy My + i3 i + i35 B, |exp(2i0,Ty ) +

(18)

AL A [ 2+ 20 Ay By + (i) +iy) By +(Ag + Ay) By + (iy g —ien Ay ) Bs +

(i Ay +ianAy) By + iy +ie,) ) AyAy By Jexp(i(e + @,) Ty ) +

A A, [2ﬂ1 + 201 A, + (i, o) s + (Az +A )ﬂ4 + (iw2A2 —io Ay )ﬂ5 +

(iwle —im A, )ﬂ6 +(iw, — i, )KlAzﬁJexp(i(a)z - )To) +

AA (51 +A (7\1,32 + By +ieoy (fs - ﬂ6))) +AyA, (ﬁl +A (Kzﬂz + By +ioy (S5 - ﬂ6))) +

%fexp(i(a)zTO +0,T; +7))+CC.
Let a»>a for definiteness. We need to distinguish between the case of internal resonance
®, =2@; and the case of no internal resonance, i.e., @, is away from 2. The case @>am,,

o, =2, is analogous. When a» is away from 2 the solvability conditions (11) are written
in the form

where
o, =210 (A7 + 1 A)) + PAAY, Gy, =210, (A + 1 Ay) + PALA;,

Po, =21 Ay (AL + 1A )= BAL, Po, = =215y (A3 +1hy) = BA; .

Thus, when there is no internal resonance, the first approximation is not influenced by the
non-linear terms; it is essentially a solution of the corresponding linear problem.
Actually, the solutions of the differential equations below

[ BA, —2iwy, + 2""1[’,\\1 P ]A; + [Zl“’lAAl“z ~2iw, ﬂl] A, =0,
1 1

( BA, —2iw, + 2“"2;:2 P ]A’z + [ 2’“’%’\2“2 - 2iw2y1]A2 = —% Fexp[i(oyT, +7)]
2 2 2

are

1 .
A(Ty) = S exp(-n T, +i©;),
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1 ) v, —io .
Az(Tl):Eazexp(—val+z®2)+ flvy~io) z)exp[z(o-lTl-rr)],

2ImA,Imx, (V% + 07

where a, and @, are the real constants,

2 +
v, = 0, (44 + 1) Ky =—4dayi+ B ImA, +71 i
j ImA,

4o, —ﬂ[lm/\n +

ImA,

As t—o0, Ti— and

2

A1—0, A, > f(vz—ial) expli(oyTy + 7 (19)
? ZImAZImlcz(v§+01) p[( i )]

according to (16), we obtain the following steady-state response:

o = f(Vz—i‘71)

e 2ImA,Imx, (v22 +o-12)

exp[i(a)zTO +oqT, + r)] +CC.

f(Vz —io'l)

2ImA,Imx, (v22 + 0'12)

Y1 =47, exp[i(a)zTO +o,T; + r)} +CC-

Therefore, the real solution is

F 1 .
x :;ImAZ p—, (v22 +o_12)[v2 cos(Qt+7)+ 0y sm(Qt+r)]+O(gz) ,
F 1 . 2
y= 7[Ulcos(£2t+r)—vzsm(Qt+1)]+O(5 )/

€ Imrcz(vz2 +o-12)
or it can be rewritten in the form

F 1

x==— sin(Qt+7+7)+0 £2),
gImAZImK2(v§+O'12)1/2 ( )
(20)
y:E;msin(QHr-r;?Z)-rO(ﬁ),
SImKZ(V22+O'12)

where 7, =arctg(v,/oy), 7, =—arctg(oy/v,).

Other situation occurs when the internal resonance w, ~2m; exists. Let us introduce
detuning parameter o, and put o, =2m; — &0, .

Taking into account (11), the solvability conditions for this case become

1 1 - .
qw, + TP&;I + [qa)z - + Tp% - ]AlAZ exp(—102T1 ) =0,
1 1 (21)

qw2 +A72p[z)2 +[q2wl +A72p2(ul ]Alz exp(lo'le)+EfeXp(l(O'1T1 +T)) =0.



378 Numerical Simulations of Physical and Engineering Processes

Here coefficients gq1, o2, Gu2-ol » 201 are the expressions in the bracket at the exponents
with the corresponding powers (17) and py1, P2, Poz-ol » P2o1 are the expressions in the
bracket at the exponents with the corresponding powers (18):

I, =2y (AL +mAy)+ BA AT, Jo, = 2iay (A3 + Ay )+ BAyAY,
Tow, =01 + A%o:2 +iwoy + Aoy +ioAas +io Ao + ia)lA%aw

Ty, =200 + 281 Aty + (i, — i) ) 5 +(A2 +7\1)a4 +(ia)2A2 —ia)lf\l)az5 +

(ia)z/i\1 —iay A, )a6 + (i, —iwy ) A Ayary,
Po, =21 Aq (Ai + :UZAl) - BA], Po, =217, (A'z + 1Ay ) - pA;,
Paw, =P+ A3 B,y +imy By + Ay By +i Mg Bs + i Ay g +ian AT B,

Pon-o, =251+ 201 A + (i@, —icoy) s + (Az + 7\1)/34 + (iszz - iwlj\l)ﬂfa +
(imyAy —ien Ay ) By + (i, — i ) Ay A, ;.

For the convenience let us introduce the polar notation

1 .
Am = Eﬂm exp(l®1n)' m= 1’ 2 s (22)

where a, and @, are the real functions of Tj.
Substitution of (22) into (21) yields

' ’ 1 i ]
(a} +ia,07 ) + vy, + 27”1’12 [¢+iy]exp(ir,) =0,
i @)

(ay +ia,0%) +voa, + 2%(26112 [¢ +inlexp(—ir,)+ ’(2{\2 exp(iy;)=0.

In the expressions above the following notations were introduced

1 1 1
(p:Re[qwz—a)l +A1p“’2_“’1]’ V/:Im[qmz—wl +A1pw2—a)l]’ é/:Re[quI +A2p2le’

1 . 1 ).
nzlm[ng)l +A2p2wl]’ K, :—4a)nz+,8(lmA”+ImA Jz, n=12,

n

n=oh1+7-0,, y,=0,-20,-0,T;,

vi and v; are defined as in Eq (13).
Separating Eqgs. (23) into real and imaginary parts and taking into account that according to
(6) An (1=1,2) is the imaginary value, we obtain
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a1y

!/

ay =—-vya; —

1 1%
2Imx;

(wcosy, +psiny,),

L)

4,0] =
191
2Imxy

(pcosy, —ysiny,), (24)

2
il : f

cosy, —¢siny, )+ —————cosy,,
2Imx, (ncosy,=¢sinyy) Imx, ImA, 7

! —
dy ==Voly =

2
ail(g“cosyz+nsin72)+ f

u2®2' = —_—
2Imx, Imx, ImA,

siny, .

r 1 ’
For the steady-state response a,, =y, =0, therefore ®; = 5(0'1 -0,), ©, =0y

Two possibilities follow from (24). The first one is given by (19). It is the solution of the
linear problem. Let us find functions a4; and a of T; according to the second possibility. It
follows from the first two Eqgs. (24) that

4 +

Aot i) - o - psing,,
a

Im«x .

—2L(oy—0y)=g@cosy, —ysiny, .

ap
So,

12
1607 (14 +ﬂ2)2 +Imxy ((‘71 —02)2)

0" +y?

a = (25)

Let us take siny and cosy using, for example, the formulas by Cramer

=p>+y?,

A A v -
cosyzzf, sin;/z:f, where A=V 7%

24

_ 1 ZImKll/l ® 3 1
M= mg (0~ 03) W —g(‘l%(/ﬁ + 1)y +Imy (0 - 0,)9),
1w 2Im vy 1
Ay =— _1 ~ i .
2 a,| ¢ Imk (o;-0,) ﬂz( mk; (o7 -0, )y 601(;11+/¢2)¢)

Then a biquadratic equation relative to a; follows from the last two Eqs. (24)

uf(é’z +772)+ 4a? [—2502(/11 + 1y )ay (ncos y, — siny, ) —Imi,0qa, (£ cos y, +nsiny2)] +
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4f* 0

4[40)2 Hy+ U 2+Im/c202}12—
AVCRITY) 2071 |4 (Im/\z)z

Finally, we obtain the expression for a;:

- Zt{@z qf , 6)

where

4 . .
p :gzijznz[—%oz (11 + 1y )(mcosy, = siny, ) —Imi,oq (£ cosy, +77s1ny2)] ,

1 2 2 2 2 2 4f2
=———1<4a5| 4 i+ ) +Imxso] |————— .
q §2+n2{ 2[ a)z( 1 2) 2 1} (I A2)2

Thus, the unknown functions in (16) were defined. It follows from (3), (16) and (22) that
x= 5[%&1 exp[i(0; + &, Ty) | +%a2 exp[i(0, + 0, Ty) |+ CC} + O(sz),

y= g[%/\lal expi(©; + oy Ty) ] +%A2a2 exp[i(©, +»,T,) | +CC} + O(gz).
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Fig. 3. (a) Frequency-response curves; 0»=0, 2~a»; (b) amplitudes a1, a2 versus the amplitude
of external excitation f; ~ap, o1= -0.5, 5= 0

Then, the real solution is as follows
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x= s{al cos[%(QH—r—yl —7/2)} +aycos(Qt+7 -y )}4— O(gz),
27)

y= —g{ul ImA, sin[%(QH T-n —;/2)} +ay Im A, sin(Qt +7 —;/1)}+0(52).

Here a1 and a; are defined by (25), (26).

Let us consider the expression for a; (26). When {[(p/2)> 0] (g > 0)} v[(p/2)* <4q], there are
no real values of a; defined by (26) and the response must be given by (20). When
[(p/2)* > q] A (g <0), there is one real solution defined by (26). Therefore, the response is one
of the two possibilities given by (20) and (27). When [(p/2)<0]A[(p/2)* >q]lA(g>0),
there are two real solutions defined by (26). Therefore, the response is one of the three
possibilities given by (20) and (27).

In Fig. 3 (a) the frequency-response curves are depicted. a1 and a, are plotted as a function
of o1 for 0»=0. The dashed line having a peak at 61=0 corresponds to ;=0 and it is a solution
of the corresponding linear problem. Arrows indicate the jump phenomenon associated
with varying the frequency of external excitation (2. Perturbation solution obtained is the
superposition of two submotions with amplitudes a; and a> and frequencies @, @
correspondingly. To compare the perturbation and numerical solutions we performed an
approximate harmonic analysis of solutions x(t), y(t) obtained numerically. These functions
are expanded in Fourier series formed of cosines

+Zakcos— J. Cos—dt k=0,1,2..

where T is the period of integration, 0<t<T. The coefficients of the Fourier series were
calculated approximately. The following parameters of set (2) were accepted: =200, /=10
(parameters =200, /=10 correspond to natural frequencies @m=10, =20, ie. @&»=2am),
1=9.985x102,  =2x103, 3=7.9588x103, = 0.002, o5=-4.0794x103, =4.0002x103,
a7=8.0005x103, f31=29.9975, [B=-0.001, fs=-4.1594x103, fy=-1.9997x103, S5=-7.9188x103,
Fs=0.7959, = -0.4083. The perturbation and numerical solutions of (2) are in good agreement.
In Fig. 3 (b) one can see saturation phenomenon. As f increases from zero, a, increases too
until it reaches the value 4,=3.5x10+ while a; is zero. This agrees with the solution of the
corresponding linear problem. Then a, saves the constant value and a; starts to increase.
Approximate harmonic analysis demonstrates good agreement of the theoretical prediction
presented in Fig. 3 (b) and the corresponding numerical solution of (2).

4. Rigid magnetic materials. Conditions for chaotic vibrations of the rotor in
various control parameter planes

In the case of rigid magnetic materials the hysteretic properties of system (1) can be
considered using the Bouc-Wen hysteretic model. It was shown (Awrejcewicz & Dzyubak,
2007) that this modeling mechanism for energy dissipation was sufficiently accurate to
model loops of various shapes in accordance with a real experiment, reflecting the behavior
of hysteretic systems from very different fields. The hysteretic model of the rotor-MHDB
system is as follows
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¥=P,(p,p,p)cosp—D,(p,¢)sing—y,i—4,[5(x—x))+(1-5)z ],

=P (p,,9)sin@+P.(p,§)cosp=1,3 = 2y [ 5(y = yo) +(1-6) 2, | + Qy +QsinQt, (28)
Z = [kz —(}/ + fsgn(x) sgn(zl)) ‘zl‘n}fc ,

2=k~ (7 + psgn(i)sgn(z)) el ]

Here z; and z; are the hysteretic forces. The case =0 corresponds to maximal hysteretic
dissipation and &=1 corresponds to the absence of hysteretic forces in the system,
parameters ( k;, f, n)eR* and yeR govern the shape of the hysteresis loops.

Conditions for chaotic vibrations of the rotor have been found using the approach based on
the analysis of the wandering trajectories. The description of the approach, its advantages
over standard procedures and a comparison with other approaches can be found, for
example, in (Awrejcewicz & Dzyubak, 2007; Awrejcewicz & Mosdorf, 2003; Awrejcewicz et
al., 2005).

The stability of motion depends on all the parameters of system (28), including initial
conditions. We traced the irregular vibrations of the rotor to sufficient accuracy in the
parametric planes of amplitude of external excitation versus hysteretic dissipation (¢, Q), the
amplitude versus frequency of external excitation (£2, Q), the amplitude versus dynamic oil-
film action characteristics (C, Q) and the amplitude versus the magnetic control parameters
(Ginr Q) (o Q).

It should be noted, that chaos is not found in absence of hysteresis when 6=1. Chaotic
vibrations of the rotor are caused by hysteresis and for all chaotic regions presented &#1. So,
in system (28) chaos was quantified using the following conditions

3t e[t,T] : {( ‘x(t*) —fc(t*)‘ > an) v ( ‘y(t*) —g(t*)‘ > aAy)} (29)
y U
chaotic vibrations chaotic vibrations
in the horizontal direction in the vertical direction

Here x(t), X(t) and y(t), 7(t) are nearby trajectories respectively, A, and A, are the
characteristic vibration amplitudes of the rotor in the horizontal and vertical direction
respectively

1 .
Ax =5 | max x(t) - min x(¢)

1 .
Ay =3 trlrg%y(f)—g;gy(f) :

[t;,T]<=[ty,T] and [ty,T] is the time interval over which the trajectories are considered. The
interval [t,t;]| is the time interval over which all transient processes are damped. The
parameter « introduced is an auxiliary parameter such that 0<a<1. aA,, aA, are referred to
as the divergence measures of the observable trajectories in the horizontal and vertical
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directions and, with the aid of the chosen parameter o, are inadmissible for the case of
regularity of the motion.

If the inequality (29) is satisfied in some nodal point of the sampled control parameter space,
then the motion is chaotic (including transient and alternating chaos). The manifold of all
such nodal points of the investigated control parameter space defines the domains of chaotic
behaviour for the considered system.

Figure 4 (a) displays the regions of rotor chaotic vibrations in (&, Q) plane. The part of this
plane (107<6<0.0017; 0.00125<Q<0.00185) was sampled by means of an uniform rectangular
grid. For this aim two families of straight lines were drawn through dividing points of the
axes

F=iA5 (=0, 1,..., 120),

Q=jAQ  (j=0,1,...,120).
Here A5=1.4165x10-5, AQ=5x10-.

The time period for the simulation T is of % in nondimentional time units. During the
computations, two thirds of the time period T corresponds to the time interval [ty,t],

where transient processes are damped. The integration step size is 0.026 . Initial conditions

of the nearby trajectories are differed less than 0.5% of characteristic vibration amplitudes,
e.g. the starting points of these trajectories are in the rectangle (|x(f)-Z(t,)|<0.0054,,

‘ y(ty)- g(to)‘ <0.005A, ). The parameter o is chosen to be equal to % .

All domains have complex structure. There are a number of scattered points, streaks and islets
here. Such a structure is characteristic of domains where chaotic vibrations are possible. For
each aggregate of control parameters there is some critical value of the hysteretic dissipation
(1-&) that if (1-0)<(1-8), chaos is not observed in the system considered.

In Fig. 4 (b) chaotic regions for the vertical vibrations of the rotor are depicted in the (€2, Q)
parametric plane (0.25<¢X1.2; 0.0015<Q<0.0022). The time period for the simulation T and
other numerical integration characteristics are the same as for (5, Q) parametric plane,
AQ=7.91667x103, 5.83333x106. Numerical experiments show that for the larger hysteretic
dissipation the chaotic regions areas are increased.

Figure 5 shows the phase portrait (a), hysteretic loop (b) and Poincaré map (e) of chaotic
motion of the rotor. Parameters of motion correspond to the parameters of chaotic region
depicted in Fig. 4 (b). The phase portrait (c), hysteretic loop (d) and Poincaré map (f) of
the periodic rotor motion are also agree well with the obtained regions of
regular/irregular behaviour of the rotor depicted in Fig. 4 (b). The influence of the
magnetic control parameters y,, A, on chaos occurring in the rotor vibrations can be
observed in Fig. 6. The (s, Q) (a) and (An, Q) (b) parametric planes were uniformly
sampled by120x120 nodal points in the rectangles (0<y;,<0.09; 0.00165<Q<0.0019),
Ayw=7.5x104, AQ=2.08333x10-6; (450<4,,<630; 0.00145<Q<0.0025), A,=1.5, AQ=8.75x10-6.
The influence of the dynamic oil-film action characteristics on chaos occurring in the rotor
motion can be observed in Fig. 7. One can see the restraining of chaotic regions with
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decreasing of hysteretic dissipation (1-6). The (C, Q) parametric plane was uniformly
sampled by 120x120 nodal points in the rectangles (0<C<1.5; 0.0015<Q<0.0021),
AC=0.0125, AQ=5x10- (a) and (0<C<1.5; 0.0015<Q<0.00225), AC=0.0125, AQ=6.25x10-¢ (b).
The time period for the simulation T and other numerical integration characteristics are
the same as for (5, Q) parametric plane.
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0.0605 0.0010 0.0015
9

0.0022

Q
=4
=}
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)
=}
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o
8
»

0.0016

04 06 08 10 12
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(b)

Fig. 4. (a) The influence of hysteretic dissipation parameter § on chaos occurring in vertical
vibrations of the rotor (28) in the case of rigid magnetic materials. The following parameters
are fixed: C=0.03, 3,=0.001, 4,=450, k,=0.000055, y=15, =0.25, n=1.0, £2=0.87, Qo=0, x0=0,
0=0, x(0)=y(0) =10, £(0)=§(0) =0, z1(0)=2:(0)=0;

(b) chaotic regions for the vertical vibrations of the rotor in the (£2 Q) parametric plane with
other parameters of the system fixed: 6=0.0001, C=0.2, ,=0, 4,,=500, k,=0.000055, =15,
$=0.25, n=1.0, Qo=0, x0=0, o=0, x(0)=y(0)= 1078, %(0)=9(0)=0, z1(0)=22(0)=0.
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Fig. 5. Phase portraits (a), (c), hysteresis loops (b), (d) and Poincaré maps (e), (f) of the
chaotic (a), (b), (e) and periodic (c), (d), (f) rotor motion that agree well with the
chaotic/regular regions in Fig. 4 (b). The parameters $=0.0001, C=0.2, y,=0, 4,,=500,
k,=0.000055, y=15, 3=0.25, n=1.0, Qv=0, x4=0, 10=0, x(0)=y(0)=10"°, £(0)=y(0)=0,
21(0)=z2(0)=0 are fixed; (a), (b), (e) £2=0.87, Q=0.00177; (c), (d), (f) £2=1.2, Q=0.0017
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Fig. 6. The influence of the magnetic control parameters y, (a) and A, (b) on chaos occurring
in vertical vibrations of the rotor (28) in the case of rigid magnetic materials. The parametric
planes are depicted at (a) 4,=500 and (b) y,=0 with other parameters of the system fixed:
6=0.000001, C=0.2, k,=0.000055, y=15, =0.25, n=1.0, £2=0.87, Qo=0, x¢=0, yo=0,
x(0)=y(0)=10", %(0)=7(0)=0, z1(0)=22(0)=0
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Fig. 7. The influence of the dynamic oil-film action characteristics on chaos occurring in
vertical vibrations of the rotor (28) in the case of rigid magnetic materials. The parametric
planes (C, Q) are depicted at (a) =0.000001, y,=0 and (b) 6=0.001, 3,=0.03 with other
parameters of the system fixed: 4,,=500, k,=0.000055, y=15, $=0.25, n=1.0, £2=0.87, Qo=0, x0=0,
10=0, x(0)=y(0)=10"*, £(0)=§(0)=0, 2(0)=2(0)=0

In order to see if the rotor chaotic motion is accompanied by increasing of the amplitude of
vibration, the amplitude level contours of the horizontal and vertical vibrations of the rotor
have been obtained. In Fig. 8 (a) the amplitude level contours are presented in (y Q)
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parametric plane with the same parameters as in Fig. 6 (a). Some “consonance” between the
chaotic vibrations regions and the amplitude level contours is observed. At that the
amplitudes of chaotic rotor vibrations are greater in comparison to the periodic vibrations.
In Fig. 8 (b) the amplitude level contours are presented in (C, Q) parametric plane with the
same parameters as in Fig. 7 (a). Although some “consonance” between the chaotic regions
of vibrations and the amplitude level contours is observed, it can not be concluded that
chaos leads to essential increasing of the rotor vibrations amplitude.
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Fig. 8. The amplitude level contours of vertical vibrations of the rotor (28): (a) in the
parametric plane (7, Q) that corresponds to Fig. 6 (a); (b) in the parametric plane (C, Q)
that corresponds to Fig. 7 (a)

5. Conclusions

2-dof non-linear dynamics of the rotor suspended in a magneto-hydrodynamic field is
studied. In the case of soft magnetic materials the analytical solutions were obtained by
means of the method of multiple scales. In the non-resonant case the system exhibits linear
properties. The perturbation solutions are in good agreement with the numerical solutions.
The cases of primary resonances with and without an internal resonance were investigated.
The frequency-response curves were obtained. The saturation phenomenon was
demonstrated. When the amplitude of the external excitation increases (or decreases), above
some critical value the energy pumping between various submotions of the rotor occurs. A
comparison of the analytical and numerical solutions based on the approximate harmonic
analysis was made.

In the case of rigid magnetic materials, hysteresis was considered using the Bouc-Wen
hysteretic model. Using the approach based on the analysis of the wandering trajectories the
regions of chaotic vibrations of the rotor were found in various control parameter planes:
amplitude of external harmonic excitation versus hysteretic dissipation, versus frequency of
external harmonic excitation, dynamic oil-film action characteristics as well as versus the
magnetic control parameters. The amplitude level contours of the horizontal and vertical
vibrations of the rotor were obtained. Phase portraits and hysteretic loops are in good
agreement with the chaotic regions obtained. Chaos was generated by hysteretic properties
of the system considered.
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1. Introduction

The essence of engineering modeling is to capture the fundamental aspects of the problem
which the model is intended to describe and to understand what the model’s limitations as a
result of the simplifications are.

Engineering models are therefore not judged by whether they are “true" or “false", but by

how well they are suitable to describe the situation in question. It may therefore often be

possible to devise several different models of the same physical reality and one can choose
among these depending on the desired model accuracy and on their ease of analysis.

Even though in engineering applications the choice of the model can be done among the

following :

1. Physical models: small-scale replica of the system or its parts (pilot plant, scale models
of buildings, ships models);

2. Analog models (electronic, electric and mechanical devices);

3. Drawing and maps;

4. Mathematical models,

over the past decade there has been an increasing demand for suitable material in the area of

mathematical modeling, because they represent a more convenient and economic tool to

understand the factors that influence the performance of a system.

Developments in computer technology and numerical solver have provided the necessary

tools to increase power and sophistication which have significant implications for the use

and role of mathematical modeling.

The conceptual representation of a real physical system can be translated in mathematical

terms adopting the usual types of models and their combinations:

e Deterministic models: the relationships between different quantities of different
engineering system are given via the continuum equations describing the conservation
of mass, momentum and energy and the relevant constitutive equations. The
appropriate differential equations are solved for a set or system of process variables and
parameters;

e  Statistical-Stochastic models: the principle of uncertainty is introduced instead of the
possibility of assigning defined values to each dependant variable for a set of values of
independent ones. Being the input-output relationships and the structure of elements
not precisely known, the use of statistical tools is implemented;
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¢  Empirical models: they are directly connected to the functional relationships between
variables and parameters by fitting empirical data, without assigning any physical
meaning and consequently any cause to their relationships. Examples of empirical
models are those based on polynomials used to fit empirical data by the “least square”
method,
or using more recent tools such as neural network and fuzzy logic techniques or fractal
theory.
Mathematical models are of great importance in chemical engineering because they can
provide information about the variations in the measurable macroscopic properties of a
physical system using output from microscopic equations which cannot usually be
measured in a laboratory. On the other hand, mathematical models can lead to wrong
conclusions or decisions about the system under investigation if they are not validated with
experimental tests. Therefore, a complete study of a physical system should integrate
modeling, simulation and experimental work.
Computer aided modeling, simulation and optimization permit a better understanding of
the chemical process behaviour, saves the time and money by providing the fewer
configuration of the experimental work. In addition, computer simulation and optimization
can help to improve the performance and the quality of a process and represent a more
flexible and cost effective approach in design and operation.
This chapter presents two different examples of developing a mathematical model relevant
to two different complex chemical systems. The complexity of the system is related to the
structure heterogeneity in the first case study and to the various physical-chemical
phenomena involved in the process in the second one.
Specific task is demonstrating how, through the use of information coming from
experimental investigations and simulation, it is possible checking the validity of the
assumptions made and fine tuning the predictive mathematical model capability.
The possibility of analysing and quantifying the role played by each step of the process is
examined in order to define the relevant mathematical expressions. The latter allows getting
useful indications about the impact of different operating conditions on the role of each step
discussing the improvements in operation (efficiency of the process) brought about by
simulation.
Next step focuses on the estimation of the significant parameters of the process. In complex
systems the determination “a priori” of some parameters is not always feasible and they are
therefore determined as a comparison of experimental and simulation data.
The final result is therefore the availability of a tool, the verified and validated (V&V)
mathematical model, that can be used for simulation, process analysis, process control,
optimization, design.

2. How to build a mathematical model

The general strategy of analysis of real systems consists of the following steps:

Problem definition

Preliminary we must pick up the essential information related to the case study/project;
establish the objectives and related priority; state what is given and what is required. Then,
we must analyse the entire process and the system in which it develops to fix the
independent and dependent variables. When the process and/or the system is so complex
that it is difficult either understand and describe it as a whole, we can break it down into
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subsystems. They do not necessary have to correspond to any physical parts of the real
process; they can be hypothetical elements which are isolated for detailed considerations.
After the process has been split up into the elements and each part has been analysed,
relationships existing among the subsystems have to be defined and assembled in order to
describe the entire process. Through the analysis of the variables and their relationships, it is
possible to define a simple and consistent set which is satisfactory for the scope. While
doing this, we can simplify the problem by introducing some assumptions so that the
mathematical model can be easy to manipulate. These simplifications had to be later
evaluated to have assurance of representing the real process with reasonable degree of
confidence.

Model development

Defined the problem, we must translate it into mathematical terms.

Models based on transport phenomena principles, the first category of mathematical models
mentioned in Introduction, are the common type models used in chemical engineering. The
various mathematical levels (molecular, microscopic, multiple gradient, maximum gradient
and macroscopic) used to represent the real processes are chosen according to the
complexity of the internal detail included in the process description. For engineering
purposes, molecular representation is not of much direct use. Microscopic and multiple-
gradient models, give a detailed description of processes but they are often excessively
complex for practical applications. Maximum-gradient model level may be considered a
multiple-gradient model in which the dispersion terms are deleted and only the largest
component of the gradient of the dependent variable is considered in each balance. These
models are more easy to deal with and generally satisfactory for describing chemical
systems Then, macroscopic scale is used to represent a process ignoring spatial variations
and considering properties and variables homogeneous throughout the entire system. In
this way no spatial gradients are involved in equations and time remains the only
differential independent variable in the balances. Mathematical description results greatly
simplified, but there is a significant loss of information regarding the behaviour of the
systems.

The development of a mathematical model requires not only to formulate the differential or
algebraic equations but as well to select appropriate initial and/or boundary conditions. In
order to determine the value of the constants which are introduced in the solution of
differential equations, it is necessary to fix a set of n boundary conditions for each nth order
derivative with respect to the space variable or with respect to time. In particular, boundary
conditions can influence the selection of a coordinate system used to formulate the
equations in microscopic and multiple-gradient models.

After setting up the model, we must evaluate the model parameters. In the microscopic
models, the required parameters are transport properties. Various methods of estimating
values for pure components and for mixtures are available in literature. The “effective”
parameters, introduced in mathematical models to describe transport phenomena in
homogeneous or multiphase systems, are clearly empirical and must be determined for the
particular system of interest. In literature predicting relationships only for traditional
systems may be available.

If deterministic models cannot be satisfactory applied in developing a model, stochastic or
empirical models can be used. These model-building techniques have more limited
applications as a consequence of that a lot of the limitations of deterministic models apply
also to stochastic and empirical ones. Moreover, the empirical models show additional
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limitations due to the fact that they are valid only for the process for which data were
collected.

Whatever is the model-building technique adopted, as more complex is the mathematical
description of the process, as more difficult is its solution. Therefore the process description
shall be a compromise among the required details, the available information on model
parameters and the limitations of the available mathematical tools.

Model solving

The goal of this step is to obtain the analytical solution (if this is possible) and/or, failing
that, the numerical solution of the model equations, which may include algebraic equations,
differential equations and inequalities. For many complex chemical processes the model
result is set of nonlinear equation requiring numerical solution. The most common way to
deal with this is to use modelling software such as gPROMS , COMSOL, Aspen Custom
Builder or other software such as Matlab.

Model verification and validation (V&V)

These actions are essential part of the model building process.

Verification concerns with building the model right. In this step a comparison between the
chosen conceptual representation and the outcome of the model is carried out to evaluate its
suitability to describe the conception. Verification is achieved through tests performed to
ensure that the model has been implemented properly and that the input parameters and
logical structure of the model have been correctly represented.

Validation concerns with building the right model. This step grants that the model is in line
with the intended requirements with reference to the methods adopted and outcome.
Validation is achieved through an interactive process of comparing prediction data to
experimental ones and using discrepancies between the values and information coming
from comparison to improve the model. This procedure is repeated as many times as
desired model accuracy is achieved.

3. Development of a mathematical model to analyze the behavior of a
prototype electrochemical reactor

The availability of mathematical modeling is of paramount importance in the development
of new equipments to evaluate their performances at operating conditions variations.

On the other hand, referring to systems characterized by either complex structure and/or
processes which involve several steps or phases, the settlement of a reliable simulation
model leads to the availability of experimental data allowing to check the assumptions taken
in the model and to estimate the model parameters. Therefore it is the combination of
equipments availability and the development of a specific mathematical model that allows
to achieve a good level of process simulation.

In this case study we intend to develop a model allowing to evaluate the performance of a
prototype electrochemical reactor for electro-coagulation and electro-flotation processes
treating slurry. The reactor is equipped with reciprocating sieve-plates as electrodes. The
peculiar characteristic of this reactor means that the fluid-dynamics of the system from
“plug flow reactor” to “perfectly mixed reactor” can be varied as a function of the agitation
level induced (Buso et al. 1991).

The reactor is a flanged plexi-glass tube, with a diameter of 40 mm and a height of 1060 mm.
The column is fitted with an agitation device, consisting of a group of 16 stainless steel plate
electrodes, mounted on a central shaft and uniformly distributed, with a space span of 50
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mm. Each 6-mm thick plate had a diameter of 400 mm and 106 holes, each 12 mm across.
Reciprocating is provided by an electric motor coupled to a gear drive fitted with frequency
control, allowing the reciprocating frequency to range from 60 to 120 rpm. A continuously
variable eccentric cam regulates reciprocating amplitude up to maximum plate spacing.
Slurry is fed through two horizontal jet injectors.

The RPC reactor is a non homogenous system with complex geometric features. The
perforated plates, mounted on a central shaft, have a double function: to grant, thanks to
their movement, the desired agitation level and, being electrodes, to allow the generation of
the electrochemical process. The latter is characterized by having several steps which
contribute to define the overall kinetics.

Fig. 1. Schematic representation of the pilot plant. A1,A2 conductivity cells; C1,C2 filters;
DC1,DC2 D.C. power supply; E liquid injectors; F variable speed motor; G1+G3 speed
controls; P1+P4 pumps; PH pH-meter; S1+56 storage tanks; T1,T3 thermometers; RM flow
meters; V1+V8 valves.

In this study the fluid-dynamic behaviour of the reactor is analysed by means of the time
dependant input technique in the reactor itself, where the plates are not acting as electrodes.
Experimental tests are carried out in the pilot plant shown in Fig. 1.

The two tanks, S1 and S2, contain the feed reactor and the relevant tracer which, by means
of the 3-ways valve V1, is injected in the form of step input pulses.

The reactor is treated as system composed of two elements: the “feed zone” and the
“reaction zone” comprising the 16 perforated reciprocating plates.

Various models to represent each subsystem can be used. In order to describe the whole
system, we must define the relationships existing among the elements. In this case the input-
forcing functions for the models proposed to represent the “reaction zone” are given by the
outputs of the model adopted to describe the “feed zone”, when a STEP change in feed
concentration is made.

The “feed zone” is considered to be either a CSTR or a tubular reactor. Its behaviour is
represented mathematically in terms of the CSTR model and axial dispersed model,
respectively, see Table 1.

The “reaction zone” is represented either by a tubular reactor or by a series of N backflow
CSTR. Depending on the constructional features of the stack-plate, the literature suggests
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different values for the number of stages N (Miyanami et al., 1973, Parthasarathy et al. 1984).
With reference to the equipment studied, the space between two neighbouring plates can be
considered an ideal mixer, that is N = 16. The N perfectly mixed cells have the same volume
and constant net or bulk flow rate V at all cross-sections and recirculation flow rate F from
each cell back to the preceding cell in the chain. The backflow ratio P is defined
as [3=(F/ V) . The mixing between the stages generates imperfection of the chain of several
ideal mixers, so the parameter y=p/(1+p) is determined from the agitation level. Dotted
cell (0) and (N+1) are fictitious cells with negligible hold-up or volume, representing the
inlet and outlet sections of the column. In the first case system behaviour is represented
mathematically in terms of dispersed model, while a backflow cell model is used in the
second one.

Moreover, only one model - dispersed or backflow cell - is used to describe the behaviour of
the entire system, consisting of the “feed zone” and the “reaction zone” .

The sets of equations proposed for each representation are then solved analytically or using
numerical techniques if necessary. The breakthrough curves - (C/C,)- for the suggested
models vary progressively between two threshold conditions : from “plug flow reactor” to
“perfectly mixed reactor”, simply as a function of the characteristic parameters such as
dispersion coefficient E and total flow ratio y, see Table 1.

The experimental step input response curves are compared with the theoretical ones,
obtained from the proposed models in order to determine the controlling parameters.
Parameters values are obtained by applying the methods of moments. (Himmelblau &
Bishoff, 1968).

Models which simulate the “feed zone” as tubular reactor may describe the behaviour of
different configurations of the “feed zone”, as a function of induced mixing level and thus of
dispersion coefficient, E. Moreover, the predictive capability can be improved estimating
parameters E and y for the sole “reaction zone”.

Mathematical models simulating the whole system as a tubular reactor or a series of
backflow CSTR take backmixing between the “feed zone” and the “reaction zone” into
consideration, although the estimated parameters are less suitable for modelling reactor
behaviour .

This analysis allows to select the most suitable model, according to the “feed zone”
geometry and operating conditions range, that is, the agitation level adopted.

Experimental tests in the frequency range 60+120 rpm and amplitude 0.1+1.8 cm are carried
out to evaluate the effects of the agitation level on fluid-dynamics parameters.

At zero agitation, the liquid velocity has a non-uniform radial profile and the dispersion
coefficient is relatively high. As agitation (A-f) is increased, when amplitude A is low,
localised agitation improves radial mixing inducing a fluid-dynamic behaviour similar to
that found in a plug flow-reactor. The dispersion coefficient decreases to a minimum. If
agitation level is further increased, the mixing between the zones of reactor gave rise, until
the behaviour of a perfectly mixed reactor is reached. The dispersion coefficient gradually
increases.

The dispersion coefficient determined from experimental data is then compared with those
estimated by correlations available in literature for single phase flow (Karr et al., 1987;
Lounes & Thibault, 1996). Karr’s correlation matches the experimental values satisfactory,
although it is inadequate when low amplitude and high frequencies are used.

The second aspect that we have to investigate regards the effects of process kinetics on the
system behaviour.
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Table 1. Fluid-dynamics simulation. Schematic representations of the RPC reactor and
concentration profiles for various values of dispersion coefficient, E, and total flow ratio, y.
C; dimensionless initial molar concentration; Cy dimensionless inlet reaction zone molar

concentration; C dimensionless exit molar concentration; T mean residence time of CSTR;
Ca dimensionless molar concentration in CSTR; L; length tubular reactor.
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Electrochemical processes on the electrode involve the following steps: diffusion from the
bulk toward the electrode surface, adsorption, electron exchange, de-adsorption and
diffusion from the electrode to the bulk. These steps contribute to define the overall kinetics.
Since in the waste water treatment dilute solutions are involved, the mass transport can be
considered the limiting step. In these conditions the mass transport coefficient become the
controlling parameter and the process kinetics are determined by the fluid-dynamics
behaviour of the solution rather than the electrode characteristics.

In the limiting current conditions, when reactant concentrations fell to zero close to the
electrode surface, the flux expression was reduced to (Prentice, 1991):

603

Nf=nF‘=Kma (1)
where:
C, - bulk ion molar concentration
F - Faraday’s constant
3 - limiting current density
Kn - mass transport coefficient
n - number of electrons involved in the reaction

N; - molar flux of the j-th species

provided that reactant migrations as consequence of the electric field is negligible.
In these conditions, the mass transport coefficient may be determined experimentally by
measuring the concentration of solution, C, , and the limiting current density , J; , by
means of the following:

_ 603

2
mhFEC, 2

In order to obtain accurate data relevant to the limiting current density, electrochemical
characterization of an aqueous solution of potassium iodide, with an excess of sodium
sulphate as supporting electrolyte, is carried out using the laboratory apparatus shown in
Fig.2, equipped with stainless steel electrodes having the same thickness and distance as
those used in the reactor.

[ INPUT DEVICE

Fig. 2. Electrochemical laboratory apparatus. CE counter- electrode; Re reference electrode
WE working electrode.
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The main reaction at the anode are:

21 > I,+2e ®)
and/or

31 & I;+2¢ (4)

I +3H,0 & [0> +6H"+ ¢’ (5)

2H,0 & O,+4H"+4e (6)

Current polarisation curves for the potassium iodide solution for various agitation levels are
obtained. These curves are then compared with the polarisation curves of the supporting
electrolyte solution obtained in the same operating conditions, in order to identify any noise
phenomena as a result of undesirable oxidation.

Data obtained allow to define the operating conditions which are used in tests on the reactor
where the plates are acting as electrodes.

The same aqueous solution of potassium iodide, with an excess of sodium sulphate as
supporting electrolyte is used in batch runs, carried out first on a single cell then on an
increasing number of cell, until the whole reactor became involved. In these conditions data
collected may be compared with those of the laboratory apparatus results. For each run,
polarisation curves are obtained by varying the agitation level within the range 60+150 rpm.
In this way information about the effect of the agitation level on current, in mass transfer
controlled regions, can be obtained. In particular, when higher agitation levels are used, the
limiting current values increase with the agitation level and the potential range in which the
current assumes the limiting value decreases until mass transport become a non-controlling
phenomenon (Buso et al., 1997).

In order to analyze the effect of agitation level on mass transport coefficient, K, , the reactor
is completely filled with the solution of potassium iodide and tests are carried out
separately, varying the amplitude and frequency of the plate oscillation. The applied
potentials are chosen according to the limiting current values previously obtained.

The mass transport coefficient may be evaluated using equation (2) where the limiting
current density is expressed through limiting current, J; , and total active electrode surface,
S. It is therefore possible to estimate the values of the (K,,S) group, simply by measuring
limiting current, I;, and concentration of solution, C,, . In this way the values of the (K,5)
group are available in the same form used in the mathematical models which describe the
behaviour of the electrochemical reactor.

The effect of geometric, fluid-dynamic and physical-chemical variables on the rate of mass
transfer may be evaluated through the following controlling dimensionless number
relationship:

Sh=y (Re)" (So)’ )

where:
Y, K, 0 - empirical constant
(Re)=(Af)(d/s)(p/p) - dimensionless Reynolds number
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(Sc)=(p/p D) - dimensionless Schmidt number
(Sh)

(K,L/D) - dimensionless Sherwood number

A - stroke

d - hole diameter

D - diffusion coefficient

f - frequency

L - characteristic length

s - fractional free flow area

P - solution density

u - solution viscosity.

In this case both the geometry and the solution properties are constant. Equation (7) may be
rewritten as follows:

K,,5= & (Re)" ®)

K o( DS
g (Re)' = (50)'( 22 o)

According to Reynolds number definition, equation (8) becomes:
K,.S=C (Af)" (10)
d K
S §[p) (11)
SH

The values of parameters « and { may be obtained by fitting of experimental data.

In this way we have obtained a dimensionless numbers relationship which allows,
according to the electrochemical process of interest, to evaluate the effects of agitation level
on mass transfer rates.

Now, we have the information to develop a steady-state reactor model.

With reference to the electrochemical system studied, the reactor may be represented as N/2
perfectly mixed cells including cathodes, N/2 reactions cells including anodes, feed zone
and the fictitious cells relevant to the inlet and the outlet sections of the reactor.
Electrochemical process occurs only in cells with anodes, so that, in steady state conditions,
the inlet concentration in the “feed zone” and in the “reaction zone” are the same. Therefore,
the models proposed for the whole reactor become the more suitable to represent
mathematically the system behaviour.

The dispersed model equations and relevant boundary conditions are:

2
0=-Vﬁ +£+(@j (12)
0z 07> \%
oc
-E — = : 13
v C‘z=0 oz 20" v C‘z=0 ( )
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& 0 (14)
oz z=L

where:

c - ion concentration

v - overall velocity

z - length coordinate through reactor.

The backflow cell model equations are:

inlet cell n=1

0=Vcy + B Vep- V(14P) ¢

anodes n=2,4,..,16

Kin Sq€a= V(1+B) €y +P Ve -V(1+26) ¢,
cathodes n=3,5,...,17

0= V(1+B) cy+P Veny-V(1+26) ¢,

outlet cell n=18

0= V(1+B) 1y +V (1+B) cyg

(15)

where:

Sa - total active anode surface

The dispersed model solution was obtained analytically , while the backflow cell model was
solved numerically using the Thomas algorithm.

To validate the proposed models, experimental tests are carried out in the pilot plant,
especially modified to operate in steady-state conditions. Samples are taken at the inlet,
outlet and at various sections of the reactors.

The characteristic parameters of the two models, (E, Km) and (y, Km) , are adjusted to give
the best fit to the experimental concentration profiles relevant to different operating
conditions. Their values are then compared with the output of fluid-dynamic study and
electrochemical characterization developed separately, together with those estimated in
literature.

A typical comparison of the model outputs and the experimental value are shown in Fig. 3.
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Fig. 3. Concentration profile in the RPC reactor. Comparison of experimental data and
predictive profile obtained with dispersed model and backflow cell model.
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The good match among the data confirms the predictive capacity of the proposed models.
Moreover, it is possible to verify the results of the effects of agitation level on the fluid-
dynamic kinetic parameters.

The response solutions of the continuous diffusion and backflow cell models, obtained with
the same value of the kinetic parameter ( K, S), are then compared using the Crank method
(Roemer & Durbin, 1967). The good match between the characteristic parameters:

pe= YL 034 (12)
E
IN(1-
1+y

determined using E and y estimated from experimental data, confirms that the diffusion
model response approaches that of the backflow cell model.

The methodology proposed provides, for the process of interest, tools to define operating
conditions which improve both reduction rates and energy consumption.

4. Development of a mathematical model to analyze the electro-generation of
hydrogen peroxide using an oxygen-reducing gas-diffusion electrode

Hydrogen peroxide is a powerful oxidising agent. It finds applications in a wide variety of
chemical processes (Brillas et al, 2000; Drogui et al., 2001; Gonzales-Garcia et al., 2007). Due
to the low solubility of the oxygen in aqueous solution, in the electrosynthesis of hydrogen
peroxide, electrochemical devices with high specific surface area are required. Gas-diffusion
electrodes (GDE) are devices suitable to supply commercially reasonable current densities
for practical implementation of this process (Alcaide et al., 2002; Da Pozzo et al., 2005;
Lobyntseva et al., 2007).

The availability of mathematical models for optimal design and process control strategy, can
improve the use of these devices.

In this case study we intend to develop a model which allows to evaluate the contributions
of the transport and reaction steps to the overall electrosyntesis process.

The process of interest occurs at the cathode. In the dilute acidic solution it can be described
by the following reaction (Alcaide et al., 2002, 2004, Kolyagin&Kornienko, 2003):

0,+2H" +2¢” - H,0, (14)

When a GDE is used as cathode, the process involves three phases: the gas phase (O), the
liquid phase (a dilute acidic solution) and, in the middle, the porous electrode.

The pore space of the electrode is filled partly with liquid and partly with gas. The gaseous
component (Oz) must overcome the mass transport resistances in the external gas film and
the gas-filled pore volume before it can be absorbed in the liquid phase. Then oxygen
diffuses through the flooded part of the pore and is reduced on the electrode surface,
forming hydrogen peroxide. This product is transported from the reaction zone through the
flooded layer out of the pore and into the liquid bulk.

Due to process complexity, some assumptions shall be taken to develop a model which has
to be sufficiently representative and easy to use. Moreover determining “a priori” some
parameters will not be an easy task, and therefore it might be necessary to obtain them
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through a comparison between experimental data and simulation values. The availability of
experimental equipments allows to check the assumptions taken, to determine the
parameters and finally to validate the proposed model.

Liquid phase Gas phase _

g_/ﬂ

Electrode

Conductor

Fig. 4. Gas Diffusion Electrode: schematic representation of the three-phase process.

In this case study, either laboratory equipment and pilot plant are used. In particular, the
scheme of the pilot plant is shown in Fig. 5.

Fig. 5. Schematic diagram of pilot plant. (1) anolyte reservoir; (2) anodic compartment; (3)
cathodic compartment; (4) gas chamber; (5) and (6) liquid holders; (7) catholite reservoir; (8)
drechsel; (9) tank for the reference electrode; (h1) anodic circuit head; (hy) cathodic circuit
head; (hs) gas circuit head.

The anodic solution (0.5 M H,SOy) is circulated through the reactor by a centrifugal pump.
During the experiments, the feed fluid is partially recycled back to the tank to mix the stored
solution. A liquid holder allows to purge the gas generated in working conditions at the
anode, according to the following reaction: HoO — %2 O, + 2H* + 2 e- . A similar flow circuit
is arranged to feed the reactor with catholyte (0.07 M NaCl solution). In this case, purging
removes the gases generated from hydrogen peroxide degradation or those passing through
the cathode into the solution. Liquid holders are placed to ensure the right pressure values
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in the anodic and cathodic compartments. Pure O; is supplied to the gas chamber in contact
with the cathode. A drechsel maintains the correct pressure in the gas chamber.

The electrochemical cell is composed of three separate elements: the side-units act as the
anodic and gas compartments, respectively. The anodic solution is fed from the bottom,
whereas the gas flows in from the top. In the central unit the electrodes are placed. The anode
is made of platinum-coated titanium net and the cathode is a Oo-diffusion electrode. The latter
consists of a silver-plated nickel web, covered with layers of VULCAN XC-72 Carbon catalyst
on both sides of the assembly and a coating of SAB (Shawinigan Acetylene Black) on the gas-
side. This hydrophobic barrier prevents flooding of the electrode. The inter-electrode
compartment has lower inlet and upper outlet tubes for catholyte circulation. The cathode
compartment is separated from the anode compartment by a cation-exchange membrane.

The process analysis starts with the study of the process kinetic aspects.

Electrochemical processes are generally described by reaction path including several reactions,
but often it is possible to choose a single reaction as the one which is controlling the process. In
this case we assume that the process can be described only by the reaction (14) while the side
reactions (Alcaide et al., 2002; Agladze et al., 2007; Kolyagin & Kornienko, 2003):

O,+4H" +4e” - 2H,0, (15)

H,0,+2H" +2e” - 2H,0 (16)

can be considered negligible.
Reaction rate expression, Rg, , is formulated as a first-order equation with reference to
oxygen (Brillas&Casado, 2002):

Ro, =K co, (17)

In Eq. (4), co, is the oxygen molar concentration in the liquid phase. Since the surface
overpotential is a large negative value during the process, the exponential term of the
anodic portion of reaction (14) in the Butler-Volmer equation can be neglected. In dilute
solution, at constant pH value, rate coefficient K is given as:

k=12 exp[-ani(U-Uo)} (18)
nFcg, RT
where :
a - specific electrode surface
c82 - oxygen equilibrium concentration
F - Faraday constant
jo - exchange current density
n - number of electrons involved in the reaction (14)
R - gas law constant
T - temperature
U - potential
U - open circuit potential

o - cathodic transfer coefficient.
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Pilot plant behaviour is studied in a batch recycle mode of operation.

The model analysis is restricted to the cathodic section, where oxygen reduction for
hydrogen peroxide generation occurs. Experimental data, available in literature (Kolyagin &
Kornienko, 2003), shown that the pH of the catholyte remains almost constant during
electrolysis, indicating that H* ion transport from the anodic compartment (through the
proton-exchange membrane) is not a limiting step for the process.

The cathodic section is treated as system composed of two elements: the liquid phase
reservoir and the cathodic semi-cell, containing the GDE.

For the reservoir, the mixing conditions achieved by partial recirculation of the feed solution
allow to consider it a perfectly mixed vessel. Therefore to simulate its behaviour in a batch
recycle mode of operation, an unsteady-state perfectly mixed model is used.

In order to analyse the role played by each step of the process, the cathodic semi-cell can be
divided into two subsystems: the porous electrode and the cathodic compartment, as shown
in Fig.6.

Reservoir - Z -

Cathodic

| o s | electrode

Porous

Fig. 6. Schematic representation of the cathodic section.

Porous electrode: considering that the front face of the GDE is in contact with the catholyte
and the other face with the gas compartment, each pore of electrode can be represented as a
sum of two elements: the gas-filled pore volume and the flooded layer. As a consequence of
hydrophobicity of the electrode material, the penetration depth of the liquid phase is
assumed to be 50% of the electrode thickness.

In the experimental tests pure oxygen is used. We can assume that no transport limitations
in the gas phase occur. Therefore, only the gas-liquid interface condition is considered. At
the interface oxygen dissolves in the liquid phase and this process is assumed to be in
equilibrium.

In the flooded layer oxygen diffuses and is reduced on the electrode surface, forming
hydrogen peroxide. This product moves from the reaction through the flooded layer until
the end of the pore. Then it is transported into the liquid bulk.

In order to represent the oxygen and hydrogen peroxide behaviour in the flooded layer, no
radial transport limitations are assumed.

Unsteady- state models are developed as a consequence of the fact that experimental runs
were carried out in a batch recycle mode of operation.

Water is not taken into account, as it is the excess component in the liquid phase and has no
significant influence on the overall process.

Cathodic compartment: this subsystem can be represented as a non homogeneous reactor in
which the hydrogen peroxide production occurs on the wall in front of electrode. Its
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behaviour may be described using models which keep into account, in different way, the
role played by fluid-dynamic conditions on the hydrogen peroxide production.

Two ideal flow models, the CSTR model and the plug flow reactor model, are considered
first. They represent two limiting cases of flow patterns: perfect mixing assumes complete
uniformity of composition throughout the reactor. At the other extreme, plug flow occurs
when fluid velocity is uniform over the entire cross-section of the reactor and there is no
intermixing of fluid elements entering the vessel later. The flow patterns found in actual
reactors fall between these two extremes. Many models have been suggested (Fahim &
Wakao, 1982; Vakao & Kaguei, 1982) to represent non-ideal flow conditions, of which one-
dimensional dispersion seems to be the most widely used (Trinidad et al., 2006). Therefore,
the dispersed model is also applied to represent the chatodic compartment, considering
dispersion in the axial direction, characterised by a dispersion coefficient independent of
position.

To simulate chatodic compartment behaviour in a batch recycle mode of operation,
unsteady-state models are used.

When the whole cathodic section is considered, the dead time of the feed liquid line, due to
feed pipes, fittings and flow meter, is added to the mean residence time of the storage tank.
The model of the cathodic section consists of the unsteady-state material balance equations
for oxygen and hydrogen peroxide in liquid phase, carried out over the reservoir and the
semi-cell. It contains the constitutive equations for the physical-chemical properties of the
species involved in the process and the kinetic expression for the reaction as presented
above. Moreover it includes the relationships existing among the selected subsystems and
the appropriate initial and boundary conditions.

The equations developed to represent mathematically the cathodic section behaviour are the
following;:

Reservoir
Oxygen

S .
deo, _

Vg = V(Cg2 - CSOZ) 19)

To define the initial condition we assume that only liquid in the flooded layer can achieve
saturation before current supply starts. Therefore:

&, 0)=0 20
In equation (19) :
CSO2 - molar concentration of oxygen in catholyte reservoir
cgz - molar concentration of oxygen in cathodic compartment of cell
Vg - volume of chatolyte in the tank
\Y - volumetric flow rate of catholyte
t - time
Hydrogen Peroxide
dcfio R S
s 7dt2 == V(CHZOZ - ®H,0, ) (21)
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To define the initial condition we assume that no hydrogen peroxide is present in the
catholyte at the beginning of the process. Therefore:

s -
Ci,0, (0)=0 (22)
where:
CSH2O2 - molar concentration of hydrogen peroxide in catholyte reservoir
cf.o,  ~molar concentration of hydrogen peroxide in cathodic compartment of cell
2%2

Cathodic semi-cell
Porous electrode

Flooded layer
Oxygen
5(:%2 B 52(:82 23)
ot o0 52 TR0,
Hydrogen Peroxide
6C£I202 B 6%%202 R (24)
ot effh0 T oo TRH0,

In equations (23) and (24):

o - molar concentration of oxygen in flooded layer of electrode

2

C§2O2 - molar concentration of hydrogen peroxide in flooded layer of electrode
z - length coordinate through pore.

The rate of consumption of Oz, Rg, , is expressed by equation (17). The rate of production of

HzOz, RHZOZ , 1s:

Ryp,0,7-Ro (25)

2

directly derived from the stoichiometry of reaction.
For each components i, the pore diffusion coefficient is related to the molecular diffusion
coefficient by the relationship:

Deg;= x D; (26)

where:

X - tortuosity factor .

To define the initial condition we assume that a flow of oxygen is first established through
the cathode up to saturation of the stagnant solution in the flooded layer; then, at time zero,
current supply starts and the cathodic solution is circulated through the reactor. The
hydrogen peroxide is assumed not to evaporate during the process and the continuity of
molar fluxes at the pore exit is accounted for (Varma & Morbidelli, 1997).

Oxygen

<5, (20) =<3, (27)
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ch, (09 =cg! (28)
dch P R
- Deff 0o, [ Py ZZ ] = KmOz |:(CO2 )L,t - CO2 j| (29)
Lt
where
Kno, - oxygen mass transfer coefficient
L - thickness of flooded layer.
Hydrogen Peroxide
hy0, (20)=0 (30)
[a 1,0, ] 0 (31)
0z
ot
d Ciro P R
-Defr 1,0, ( P ; =1 =Kin,o, |:(CH202 )L,t - CHZOZ:l (32)
Lt
where:

Km0, —hydrogen peroxide mass transfer coefficient.

. . . . sat . . .
The oxygen concentration in the liquid phase, c5, , is related to the partial pressure in the
gas phase, I, , by Henry’s law:

Po,=Ho, CSoazt (33)

where Hg, is the Henry constant. This equation represents the relationship existing among
the considered elements: the gas-filled pore volume and the flooded layer.
Cathodic compartment

e  CSTR model

Oxygen
dcd .
Vi “dt t= V(CSO2 - Cléz ) *t1ng, (34)
where:
Vi - volume of catholyte in cathodic compartment.

The molar flow rate of oxygen in liquid film, ny_ ,is expressed the linear transport law:

ny, =AeK;o, [(ng )L,t - ng} (35)

where:
A - electrode surface
€ - total porosity of electrode.
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To define the initial condition we assume that only liquid in the flooded layer can achieve
saturation before current supply is started. Therefore:

ng 0)=0 (36)
Equation (35) represents the relationship existing among the considered elements: flooded

layer and cathodic compartment.
Hydrogen Peroxide

R
d CH,0,
R at

The molar flow rate of hydrogen peroxide in liquid film,ny,g ,is expressed the linear
transport law:

— vf.S
= V(cho, - cio,) * Nio, 37)

N0, =AeKyn0, |:(C%202 )L/t - CEZOZ } (38)

To define the initial condition we assume that no hydrogen peroxide is present in the
catholyte at the beginning of the process. Therefore:

CEIZO2 (0) =0 (39)

Equation (38) represents the relationship existing among the considered elements: flooded
layer and cathodic compartment.
e Plug- flow reactor model

Oxygen
ocR ocR A
ooy S0 B, [(ng) } (40)
oy Vr Lt
where:
v - velocity
y - length coordinate through cathodic compartment.

According to the above said assumptions, the initial and boundary condition are expressed
by the following expressions:

ng (Y’O) = 0 (41)
ng (O’t) = C%Z (42)
Hydrogen Peroxide
0 cﬁzo2 -y 0 Cﬁzoz
ot oy 43)
Ace
+ —

P R
A Kum,o0, |:(CH2O2 )L’t - CHZOZjl
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According to the above said assumptions, the initial and boundary condition are expressed
by the following expressions:

cii,0, (10) =0 (44)
ngoz o) = CSH202 (45)
o Dispersed model
Oxygen
acs dcy ? S
2=y 2 +Eo, 202

Ae P R
" Ko (), %)

The initial and boundary condition are expressed by the following expressions:

ng (y,0)=0 (47)
0 cgz .
R y=0 __ s
v eo,] -Eo, Y e (48)
R
%o, _y (49)
vl
where:
h - height of the cathodic compartment of the cell.
Hydrogen Peroxide
0 CEZO2 -y 0 CEZO2 By 52 CEZO2
22 2
ot oy oy (50)
Ae
+

P R
7VR Ko, [(CH202 )L’t - CH,0, }

The initial and boundary condition are expressed by the following expressions:

CE2O2 (y,0)=0 (51)
dcfo
2V |y=0
v CEZO2 y=0 - EHZOZ ay 7 =y Cilzoz (52)
ack
20, | 0 (3)
oy

y=h
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The availability in literature of suitable data and empirical correlations concerning mass
transport in this kind of systems allows to evaluate model parameters, such as physical-
chemical properties of the species involved in the process, Henry constant, porosity and
tortuosity factor of the electrode and external mass transfer coefficients. The kinetic
coefficient, K, can be determined using the equation (18). In order to obtain the required
data, experimental runs were carried out in an electrochemical laboratory apparatus. The
evaluation of the dispersion coefficient requests the availability of data relevant to the effects
of fluid-dynamics on the system behaviour. Normally, for complex systems, these
information are obtained by carrying out the work in equipments, where the time
dependent input technique is used. Lack of information about the fluid flow within the
cathodic compartment, leads to assign to this parameter various values in order to analyse
the role that these fluid-dynamics aspects have on the whole system performance.

The model’s equations can be solved numerically by g-PROMS software.

In order to validate the model, electrolyses are carried out in the pilot plant above described.
The amount of hydrogen peroxide generated is monitored during the experiments.

With reference to the working conditions of experimental tests, the concentration profiles
from various proposed models are obtained.

To verify the models, tests are performed varying the dispersion coefficient value in the
dispersed model. Results confirm that, increasing the dispersion coefficient, it is possible to
change from the behaviour of a “plug flow reactor” to a “perfectly mixed reactor”, described
by the relevant models.

The comparison between the concentration of hydrogen peroxide at the exit section of the
electrochemical cell at the threshold conditions typical of the “plug flow reactor” and
“perfectly mixed reactor”, allows to define the range in which dispersion coefficient affects
the behaviour of the system. At the beginning of electrolysis, the effects of non-ideal flow
patterns in the hydrogen peroxide concentration profiles inside the cathodic compartment
are striking, as Fig. 7 clearly shows.

3.00E-10,

E=1m?s?
2.50E-10
= 2.00E-10
S E=01m2s?t
5 1s0E10
£
3
3]
2
S 1.00E-10
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%
T 5.00E-11
0
0 5 10 15 20 25 30
y [mm]

Fig. 7. Simulated hydrogen peroxide concentration profile inside the cathodic compartment .
Effect of dispersion.

With increasing time, the effects become more blurred because of recirculation. In these
conditions, the system is poorly sensitive to variations in the dispersion coefficient.

The shape of hydrogen peroxide concentration profiles in the flooded layer inside the pore,
at various times is a combination of the resistances of the electrochemical reaction and the
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diffusion of both components in the liquid phase. In the given working conditions, results of
simulation, shown in Fig. 8, highlight that at longer times, more hydrogen peroxide
accumulates within the pore. This may become a limiting factor when the contribution of
the peroxide decomposition reaction to the overall process is considered.
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Fig. 8. Simulated hydrogen peroxide concentration profile inside the flooded layer at
different times.

Lastly, validation is achieved comparing predictions based on equations (6)+(40) with the
experimental data obtained in the pilot plant (Giomo et al., 2008). Fig.9 shows the results
with reference to simulated values obtained from CSTR model.
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Fig. 9. Hydrogen peroxide electro-generation in the catholyte during the electrolysis.
Comparison of experimental data and simulation values obtained from CSTR model.

A good match between simulated and experimental values is observed at the beginning of
electrolysis, in accordance with the literature (Da Pozzo et al., 2005). At longer times, the
model overestimates hydrogen peroxide production, perhaps due to several factors, e.g.,
higher rate of side reactions (15) and (16) (Da Pozzo et al., 2005), electrode flooding
(Pasaogullari & Wang, 2004), or existence of considerable local overpotential or OH-
concentration values on the cathode surface, followed by H»O, decomposition and H,O
production (Alcaide et al.,, 2002; Agladze et al.,, 2007; Kolyagin & Kornienko, 2003), not
represented by the first-order kinetic equation used in this first model approach.
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5. Conclusion

The two applications presented are basic examples of:

e simulations of the same system by using different models so as to compare their
predictive capacity and the limitations of the solution techniques required to solve
them;

e splitting the process into the main steps to define the subsystems which allow to
analyse those particular attributes of the process that are of interest;

e development of mathematical models for each subsystems which allow to highlight the
role played by the single step of the process and the parameters which are controlling
its behaviour. The purpose is to obtain a representation of the whole process based on
fairly simple representations for the parts;

e design of several laboratory apparatus or pilot plants to analyse the behaviour of
subsystems, to obtain information about the essential features of the process and to
evaluate the parameters in the model;

e comparison between calculated values and experimental data to evaluate how well the
model represents the real process and to check the validity of assumptions made.
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1. Introduction

In a chemical plant, a faulty sensor or actuator may cause process performance degradation
(e.g. lower product quality) or fatal accidents (e.g. temperature run-away). For complex
systems (e.g. CSTR reactors), fault detection and isolation are more complicated for the
reason that some sensors cannot be placed in a desirable place. Furthermore, for some
variables (concentrations, moles ...), no sensor exists. Therefore, the need for accurately
monitoring process variables and interpreting their variations increases rapidly with the
increase in the level of instrumentation in chemical plants. Supervision is a set of tools and
methods used to operate a process in normal situation as well as in the presence of failures.
Main activities concerned with supervision are real time Fault Detection and Isolation (FDI)
and Fault Tolerant Control (FTC) to achieve safe operation of the system in the presence of
faults. Supervision scheme is illustrated in two parts (see Fig. 1). The present paper deals
with the FDI aspect using a model based approach. For reconfiguration or accommodation
of the system, FTC methodology can be consulted in (Blanke M. & al., 2006).

FDI
- TTT===== 1
1 1
FTC 1 Detection & 1
___________ : Isolation :
: : | Logic 1
| o e
Reconfiguration | 1
1
| Mechanism - (JI_: Residual :
: (Switching Logic) : N Generator  [<7]
1 1 | !
1 S(1) 1 ! !
1 1 b e !
1 1
1 1
Reference 1 .
1 Controller 10 Plant ©
1
! |
1 \ 1
L ____2X_ 1

Fig. 1. Supervision scheme in process engineering.
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Many researchers tried to find new approaches for performing fault diagnosis
(Venkatasubramanian V., 2005), (Samantaray A.K. & al, 2006), (E1 Harabi R. & al., 2010a) and
(El Harabi R. & al., 2010b). Others used existing approaches such the classic ones to develop
their performance for new complex systems (Sotomayor O.A.Z. & al., 2005), (Chetouani Y.,
2004) and (Venkatasubramanian V., 2003). Several fault diagnosis approaches have been
proposed for processes operating mainly in steady-state conditions. The application of these
techniques to batch chemical processes are usually challenging, because of their nonlinear
dynamics and intrinsically unsteady operating conditions. In addition, complete state and
parameters measurements (i.e. products composition) are usually not available (Levenspiel
0., 1999). These approaches can be based on a mathematical model (e.g. analytical
redundancy methods, observers based methods...) (Edwards C. & al., 2000), (Caccavale F. &
al., 2009) or only on historical data (e.g. fuzzy methods, neural approach...) (De Miguela L.J.
& al., 2005), (Evsukoffa A. & al., 2005).

Model-based methods consist in the comparison between the measurements of variables
set characterizing the behavior of the monitored system and the corresponding estimates
predicted via the mathematical model of system. The deviations between measured and
estimated process variables provide a set of residuals, sensitive to the occurrence of faults;
then, by using the information carried by residuals, faults can be detected (i.e., the
presence of one or more faults can be recognized) and isolated (i.e., the faulty components
are determined). Among model-based analytical redundancy approaches, observer-based
schemes have been successfully adopted in a variety of application fields (Sotomayor
O.A.Z. & al, 2005), (Patton R.J & al., 1997), (Frank P.M. & al., 1990). Namely, a model of
the system (often called diagnostic observer) is operated in parallel to the process to
compute estimated process variables to be compared to their measured values.
Application of approaches based on Luenberger and/or Kalman observers to chemical
reactors diagnosis are usually designed by resorting to linearized models of the reactor.
However, the adoption of linearized models has been proven to work properly for the
Continuous Stirred Tank Reactors (CSTRs), mainly operating at steady state, due to their
intrinsic unsteady behavior (Rajaraman S. & al., 2006), (Favache A. & al., 2009), (Hsoumi
A. & al., 2009), (Han Z. & al., 2005).

The basic idea of this paper concerns use of Luenberger and Kalman observers for modeling
and monitoring nonlinear dynamic processes. Furthermore, the generated fault indicators
are systematically associated to a specific (sensor, actuator) faults which may affect the
system. A Continuous Stirred Tank Reactor with its environment has been selected as an
application.

The paper is organized as follows. Section 2 presents a brief review of Fault Detection and
Isolation (FDI) in the chemical processes and basic proprieties of linear observers. In the
third section, it is shown how the Luenberger and Kalman observers can be used for
systematic generation of FDI algorithms. The methodology is applied for online diagnosis of
a pilot chemical reactor. Finally, the fourth section concludes the work.

2. Model-based diagnosis methods in the chemical processes

2.1 Review

Due to the frequent and serious accidents that have occurred in the last decades in the
chemical industry, the importance of incipient fault detection and diagnosis in complex
process plants has become more obvious. The interest to determine the fault occurrence on-
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line during the chemical reaction justifies the development of fault detection methods.
Therefore, extensive reviews of different fault diagnosis methods of chemical process can be
found in the literature. As cited above, according to the knowledge and the quality of data
available for the process to be monitored, the FDI methods used are mainly based on two
approaches: model-based and non-model-based. In this section are consulted only papers
related to model based diagnosis applied to the chemical processes.

Model-based methods explicitly use a dynamic model of the process. A pedagogical theory
on model based FDI and FTC can be consulted in (Blanke M. & al., 2006). Those methods can
be classified into two classes: namely, quantitative model based and qualitative model
based. Qualitative model based methods include structural and functional analysis, fault
tree analysis, temporal causal graphs, signed directed graphs, etc.. The models can be given
under formal format. Quantitative model based methods such as observer based diagnosis,
parity space, and extended Kalman filters, etc. strongly rely on the availability of an explicit
analytical model to perform the FDI of the process. In (Chetouani Y., 2004) and (Chetouani
Y. & al,, 2002), the measurements of a set of process variables (from chemical reactor) are
compared to the corresponding estimates, predicted via the mathematical model of the
system. By comparing measured and estimated values, a set of variables sensitive to the
occurrence of faults (residuals) are generated; by processing the residuals. Estimation of
monitored process variables requires a model of the system (diagnostic observer) to be
operated in parallel to the process. For this purpose, Luenberger observers, Unknown Input
Observers and Extended Kalman Filters (UIOEKF) have been mostly used in fault detection
and identification for chemical processes. A Luenberger observer is used for sensor fault
detection and isolation in chemical batch reactors in (Chetouani Y., 2004), while in
(Chetouani Y. & al., 2002), the robust approach is compared with an adaptive observer for
actuator fault diagnosis. In (Paviglianiti G. & al., 2007), two different nonlinear observer-
based methods have been developed for actuator Fault Diagnosis of a chemical batch
reactor. An adaptive observer has been used to build a residual generator able to perform
detection of incipient and abrupt faults. This scheme of observer-based diagnosis consists of
a bank of two observers for residual generation which guarantees sensor fault detection and
isolation in presence of external disturbances and model uncertainties. Since perfect
knowledge of the model is rarely a reasonable assumption, soft computing methods,
integrating quantitative and qualitative information, have been developed to improve the
performance of FD observer-based schemes for uncertain systems. Observer FDI based is
well suited for linear or a class of nonlinear dynamic models. Furthermore, such technique is
more widely used for sensor and actuator faults detection. Their isolation needs a bank of
observers.

The extended Kalman filter (EKF) is employed to estimate both the parameters and states of
chemical engineering processes. The basic idea of the adopted approach is to reconstruct the
outputs of the system from the measurements by using observers or Kalman filters and
using the residuals for fault detection. Two faults in a perfectly stirred semi-batch chemical
reactor, occurring at an unknown moment, are experimentally realized. EKF is applied on a
two-tank system and a fluid catalytic cracking (FCC) unit in (Huang Y. & al., 2003). In (Porru
G. & al,, 2000), the fault detection method is based on a test applied to the reaction mass
temperature which represents the monitoring parameter. This parameter is considered
essential because it is the result of all the faults effects and of the introduced experimental
parameters (inlet flow, stirring rate, cooling flow, etc.). Indeed, the reaction mass
temperature is the dynamic image in case of fault absenc